File size: 18,050 Bytes
b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf e1b6d21 b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf 50ffeff b7811cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import datetime
import requests
import re
import pandas as pd
import gradio as gr
import threading
import uuid
import queue
import time
import fitz # PyMuPDF for reading PDF files
from transformers import AutoTokenizer
from mistralai import Mistral
from huggingface_hub import InferenceClient
# ------------------------------
# Helper functions and globals
# ------------------------------
sheet_data = None
file_name = None
def debug_print(message: str):
print(f"[{datetime.datetime.now().isoformat()}] {message}", flush=True)
def initialize_tokenizer():
try:
return AutoTokenizer.from_pretrained("gpt2")
except Exception as e:
debug_print("Failed to initialize tokenizer: " + str(e))
return None
global_tokenizer = initialize_tokenizer()
def count_tokens(text: str) -> int:
if global_tokenizer:
try:
return len(global_tokenizer.encode(text))
except Exception:
return len(text.split())
return len(text.split())
def generate_response(prompt: str, model_name: str, sheet_data: str) -> str:
full_prompt = f"{prompt}\n\nSheet Data:\n{sheet_data}" # Append loaded text to prompt
if "Mistral" in model_name:
mistral_api_key = os.getenv("MISTRAL_API_KEY")
if not mistral_api_key:
raise ValueError("MISTRAL_API_KEY environment variable not set.")
mistral_client = Mistral(api_key=mistral_api_key)
response = mistral_client.chat.complete(
model="mistral-small-latest",
messages=[{"role": "user", "content": full_prompt}],
temperature=0.7,
top_p=0.95
)
return response.choices[0].message.content
elif "Meta-Llama" in model_name:
hf_api_token = os.getenv("HF_API_TOKEN")
if not hf_api_token:
raise ValueError("HF_API_TOKEN environment variable not set.")
client = InferenceClient(token=hf_api_token)
response = client.text_generation(
full_prompt,
model="meta-llama/Meta-Llama-3-8B-Instruct",
temperature=0.7,
top_p=0.95,
max_new_tokens=512
)
return response
else:
raise ValueError("Invalid model selection. Please choose either 'Mistral-API' or 'Meta-Llama-3'.")
def process_query(prompt: str, model_name: str):
global sheet_data
if sheet_data is None:
sheet_data = get_sheet_data()
full_prompt = f"{prompt}\n\nSheet Data:\n{sheet_data}"
debug_print(f"Processing query with model {model_name}: {full_prompt}")
response = generate_response(prompt, model_name, sheet_data)
input_tokens = count_tokens(prompt + "\n\n" + sheet_data)
output_tokens = count_tokens(response)
return response, f"Input tokens: {input_tokens}", f"Output tokens: {output_tokens}"
def ui_process_query(prompt, model_name):
return process_query(prompt, model_name)
# ------------------------------
# Cleaning Functions
# ------------------------------
def clean_text(text: str, remove_spaces: bool, remove_headers_footers: bool, lowercase: bool, remove_special: bool) -> str:
"""
Cleans the given text based on the provided options.
"""
# Remove extra spaces & newlines
if remove_spaces:
text = re.sub(r'\s+', ' ', text).strip()
# Remove headers/footers: a simple heuristic to remove lines that repeat
if remove_headers_footers:
lines = text.split('\n')
freq = {}
for line in lines:
line_stripped = line.strip()
if line_stripped:
freq[line] = freq.get(line, 0) + 1
lines = [line for line in lines if freq.get(line, 0) <= 1]
text = "\n".join(lines)
if lowercase:
text = text.lower()
if remove_special:
text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
return text
def execute_cleaning(text: str, remove_spaces: bool, remove_headers: bool, lowercase: bool, remove_special: bool) -> str:
if not text or text.strip() == "":
return "No text available for cleaning."
cleaned = clean_text(text, remove_spaces, remove_headers, lowercase, remove_special)
return cleaned
# ------------------------------
# Global variables for background jobs
# ------------------------------
jobs = {}
results_queue = queue.Queue()
last_job_id = None
# ------------------------------
# Job management functions
# ------------------------------
def get_job_list():
job_list_md = "### π Submitted Jobs\n\n"
if not jobs:
return "No jobs found. Submit a query or load files to create jobs."
sorted_jobs = sorted(
[(job_id, job_info) for job_id, job_info in jobs.items()],
key=lambda x: x[1].get("start_time", 0),
reverse=True
)
for job_id, job_info in sorted_jobs:
status = job_info.get("status", "unknown")
job_type = job_info.get("type", "unknown")
query = job_info.get("query", "")
start_time = job_info.get("start_time", 0)
time_str = datetime.datetime.fromtimestamp(start_time).strftime("%Y-%m-%d %H:%M:%S")
query_preview = query[:30] + "..." if query and len(query) > 30 else query or "N/A"
if status == "processing":
status_formatted = f"<span style='color: red'>β³ {status}</span>"
elif status == "completed":
status_formatted = f"<span style='color: green'>β
{status}</span>"
else:
status_formatted = f"<span style='color: orange'>β {status}</span>"
if job_type == "query":
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - Query: {query_preview}\n"
else:
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - File Load Job\n"
return job_list_md
def get_sheet_data():
global sheet_data
return sheet_data if sheet_data else "No data loaded."
def process_in_background(job_id, func, args):
result = func(*args)
results_queue.put((job_id, result))
debug_print(f"Job {job_id} finished processing in background.")
def submit_query_async(query, model_choice=None):
global last_job_id
global sheet_data
if not query:
return ("Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0", "", "", get_job_list())
job_id = str(uuid.uuid4())
debug_print(f"Starting async job {job_id} for query: {query}")
threading.Thread(
target=process_in_background,
args=(job_id, process_query, [query, model_choice or "Mistral-API"])
).start()
jobs[job_id] = {
"status": "processing",
"type": "query",
"start_time": time.time(),
"query": query,
"model": model_choice or "Mistral-API"
}
last_job_id = job_id
return (
f"π Query submitted and processing in the background (Job ID: {job_id}).\n\n"
f"Use the 'Check Job Status' section to view results.",
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(query)}",
"Output tokens: pending",
job_id,
query,
get_job_list()
)
def job_selected(job_id):
if job_id in jobs:
return job_id, jobs[job_id].get("query", "No query for this job")
return job_id, "Job not found"
def refresh_job_list():
return get_job_list()
def sync_model_dropdown(value):
return value
def check_job_status(job_id):
if not job_id:
html_response = "<div style='font-family: monospace;'><p>Please enter a job ID.</p></div>"
return html_response, "", "", "", ""
try:
while not results_queue.empty():
completed_id, result = results_queue.get_nowait()
if completed_id in jobs:
jobs[completed_id]["status"] = "completed"
jobs[completed_id]["result"] = result
jobs[completed_id]["end_time"] = time.time()
debug_print(f"Job {completed_id} completed and stored in jobs dictionary")
except queue.Empty:
pass
if job_id not in jobs:
html_response = "<div style='font-family: monospace;'><p>Job not found. Please check the ID and try again.</p></div>"
return html_response, "", "", "", ""
job = jobs[job_id]
job_query = job.get("query", "No query available for this job")
if job["status"] == "processing":
elapsed_time = time.time() - job["start_time"]
html_response = (
f"<div style='font-family: monospace;'>"
f"<p><strong>β³ Query is still being processed</strong> (elapsed: {elapsed_time:.1f}s). Please check again shortly.</p>"
f"</div>"
)
return (
html_response,
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(job.get('query', ''))}",
"Output tokens: pending",
job_query
)
if job["status"] == "completed":
result = job["result"]
processing_time = job["end_time"] - job["start_time"]
html_response = (
f"<div style='font-family: monospace;'>"
f"<p><strong>β
Response:</strong> {result[0]}</p>"
f"<p>Processing time: {processing_time:.1f}s</p>"
f"</div>"
)
return (
html_response,
f"Job ID: {job_id}",
result[1],
result[2],
job_query
)
html_response = f"<div style='font-family: monospace;'><p>Job status: {job['status']}</p></div>"
return html_response, "", "", "", job_query
def cleanup_old_jobs():
current_time = time.time()
to_delete = []
for job_id, job in jobs.items():
if job["status"] == "completed" and (current_time - job.get("end_time", 0)) > 86400:
to_delete.append(job_id)
elif job["status"] == "processing" and (current_time - job.get("start_time", 0)) > 172800:
to_delete.append(job_id)
for job_id in to_delete:
del jobs[job_id]
debug_print(f"Cleaned up {len(to_delete)} old jobs. {len(jobs)} jobs remaining.")
return f"Cleaned up {len(to_delete)} old jobs", "", ""
# Function to run query (dummy function)
def run_query(max_value):
return [[i, i**2] for i in range(1, max_value + 1)]
def periodic_update(is_checked):
interval = 3 if is_checked else None
debug_print(f"Auto-refresh checkbox is {'checked' if is_checked else 'unchecked'}, every={interval}")
if is_checked:
global last_job_id
job_list_md = refresh_job_list()
job_status = check_job_status(last_job_id) if last_job_id else ("No job ID available", "", "", "", "")
from bs4 import BeautifulSoup
html_content = job_status[0]
plain_text = ""
if html_content:
soup = BeautifulSoup(html_content, "html.parser")
plain_text = soup.get_text()
return job_list_md, job_status[0], plain_text, job_status[1], job_status[2], job_status[3], job_status[4]
else:
return "", "", "", "", "", "", ""
# ------------------------------
# Gradio UI Layout: Scouting AI App
# ------------------------------
with gr.Blocks() as app:
# App Title and Description
gr.Markdown("## π PDF Conversion")
gr.Markdown("Text cleaning and processing tools.")
# Top section: File Load and Job Information (two columns)
with gr.Row():
# Left Column: File Load Section (50% width)
with gr.Column(scale=1):
gr.Markdown("### π Load File Section")
gr.Markdown("Upload your **.pdf** file below and specify the page range to extract text.")
file_input = gr.File(label="Upload .pdf File")
page_start_input_file = gr.Textbox(label="Page Start")
page_end_input_file = gr.Textbox(label="Page End")
load_button_file = gr.Button("Load File")
sheet_output_file = gr.Textbox(label="Extracted Text", interactive=False)
# Right Column: Job Information Section (50% width)
with gr.Column(scale=1):
gr.Markdown("### π Job Information")
gr.Markdown("View all submitted jobs, refresh the list, and check the status of individual jobs.")
job_list_display = gr.Markdown(
get_job_list(),
elem_id="job-list-display",
elem_classes=["scrollable-job-list"]
)
gr.HTML("""
<style>
.scrollable-job-list {
height: 220px;
overflow-y: auto;
border: 1px solid #ccc;
padding: 10px;
margin-bottom: 10px;
}
</style>
""")
refresh_button = gr.Button("Refresh Job List")
gr.Markdown("#### π Check Job Status")
job_id_input = gr.Textbox(label="Enter Job ID")
check_status_button = gr.Button("Check Job Status")
# New row: Cleaning Tasks placed in two equal columns under the load section
with gr.Row():
# Left half: Cleaning Tasks checkboxes and Clean button
with gr.Column(scale=1):
gr.Markdown("### Cleaning Options")
remove_spaces_checkbox = gr.Checkbox(label="Remove extra spaces & newlines: Clean unnecessary whitespace.", value=True)
remove_headers_checkbox = gr.Checkbox(label="Remove headers/footers: If repeated text appears on every page", value=False)
lowercase_checkbox = gr.Checkbox(label="Convert text to lowercase: For uniformity in text analysis.", value=False)
remove_special_checkbox = gr.Checkbox(label="Remove special characters: Useful for structured data extraction", value=False)
clean_button = gr.Button("Clean")
# Right half: Display Cleaned Text
with gr.Column(scale=1):
cleaned_output = gr.Textbox(label="Cleaned Text", interactive=False)
# Submit Query Section remains unchanged
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Submit Query")
gr.Markdown("Enter your prompt below and choose a model. Your query will be processed in the background.")
model_dropdown = gr.Dropdown(
choices=["πΊπΈ Remote Meta-Llama-3", "πͺπΊ Mistral-API"],
value="πͺπΊ Mistral-API",
label="Select Model"
)
prompt_input = gr.Textbox(label="Enter your prompt", value="", lines=6)
with gr.Row():
auto_refresh_checkbox_query = gr.Checkbox(
label="Enable Auto Refresh",
value=False
)
submit_query_button = gr.Button("Submit Query")
status_text = gr.Textbox(label="Response Text", visible=True)
response_output = gr.Textbox(label="Response", interactive=False)
token_info = gr.Textbox(label="Token Info", interactive=False)
with gr.Column(scale=1):
status_output = gr.HTML(label="Job Status", interactive=False)
job_id_display = gr.Textbox(label="Job ID", interactive=False)
input_tokens_display = gr.Textbox(label="Input Tokens", interactive=False)
output_tokens_display = gr.Textbox(label="Output Tokens", interactive=False)
job_query_display = gr.Textbox(label="Job Query", interactive=False)
# ------------------------------
# Set up interactions
# ------------------------------
# Updated Load file interaction: read PDF pages
def load_file(file, page_start, page_end):
global sheet_data, file_name
file_name = file
if file is None or str(page_start).strip() == "" or str(page_end).strip() == "":
return "Please upload a file and enter valid page numbers."
try:
doc = fitz.open(file.name)
ps = int(page_start)
pe = int(page_end)
text = ""
# Convert page numbers from 1-indexed to 0-indexed
for page_num in range(ps - 1, pe):
text += doc[page_num].get_text() + "\n"
sheet_data = text
return text
except Exception as e:
return f"Error reading PDF: {str(e)}"
load_button_file.click(
fn=load_file,
inputs=[file_input, page_start_input_file, page_end_input_file],
outputs=sheet_output_file
)
# Cleaning button interaction: clean the loaded text using selected options.
clean_button.click(
fn=execute_cleaning,
inputs=[sheet_output_file, remove_spaces_checkbox, remove_headers_checkbox, lowercase_checkbox, remove_special_checkbox],
outputs=cleaned_output
)
submit_query_button.click(
fn=submit_query_async,
inputs=[prompt_input, model_dropdown],
outputs=[
response_output, token_info,
input_tokens_display, output_tokens_display,
job_id_input, job_query_display, job_list_display
]
)
check_status_button.click(
fn=check_job_status,
inputs=[job_id_input],
outputs=[status_output, job_id_display, input_tokens_display,
output_tokens_display, job_query_display]
)
refresh_button.click(
fn=refresh_job_list,
inputs=[],
outputs=job_list_display
)
auto_refresh_checkbox_query.change(
fn=periodic_update,
inputs=[auto_refresh_checkbox_query],
outputs=[job_list_display, status_output, status_text, job_id_display, input_tokens_display, output_tokens_display, job_query_display],
every=3
)
if __name__ == "__main__":
debug_print("Launching Gradio UI...")
app.queue().launch(share=False)
|