File size: 28,704 Bytes
6f5e1a2 82a3b72 6f5e1a2 5676bf3 c59b529 6f5e1a2 82a3b72 5676bf3 c59b529 82a3b72 6f5e1a2 509e545 c59b529 509e545 c59b529 509e545 c59b529 5676bf3 c59b529 509e545 6f5e1a2 c59b529 509e545 c59b529 509e545 c59b529 509e545 c59b529 509e545 c59b529 79c7d42 c59b529 509e545 c59b529 509e545 c59b529 5676bf3 c59b529 6f5e1a2 5676bf3 6f5e1a2 5676bf3 6f5e1a2 82a3b72 5676bf3 82a3b72 5676bf3 82a3b72 5676bf3 82a3b72 c59b529 82a3b72 5676bf3 c59b529 5676bf3 82a3b72 5676bf3 c59b529 5676bf3 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 4780b8f 82a3b72 5676bf3 4780b8f bb9ca74 4780b8f bb9ca74 4780b8f bb9ca74 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 5676bf3 ce7bfbc 1104e14 10b8a2d ce7bfbc 10b8a2d 5676bf3 4780b8f 5676bf3 a02f041 5676bf3 4780b8f 6f5e1a2 82a3b72 4780b8f 5676bf3 6f5e1a2 5676bf3 6f5e1a2 5676bf3 82a3b72 5676bf3 82a3b72 c59b529 82a3b72 c59b529 509e545 c59b529 82a3b72 3fb806f c59b529 4780b8f 5676bf3 bb9ca74 82a3b72 bb9ca74 5676bf3 0e17596 5676bf3 0e17596 4780b8f 5676bf3 4780b8f bb9ca74 82a3b72 6f5e1a2 82a3b72 5676bf3 82a3b72 5676bf3 6f5e1a2 82a3b72 6f5e1a2 82a3b72 c59b529 82a3b72 5676bf3 82a3b72 6f5e1a2 82a3b72 4780b8f 5676bf3 4780b8f bb9ca74 4780b8f 5676bf3 bb9ca74 5676bf3 0e17596 5676bf3 82a3b72 6f5e1a2 ce7bfbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
import os
import datetime
import requests
import re
import pandas as pd
import gradio as gr
import threading
import uuid
import queue
import time
from transformers import AutoTokenizer
from mistralai import Mistral
from huggingface_hub import InferenceClient
import smtplib
import ssl
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart # Add this line
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
import base64
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request
import openai # Correct OpenAI import
from openai.error import RateLimitError # Import rate limit error handling
# ------------------------------
# Helper functions and globals
# ------------------------------
sheet_data = None
file_name = None
sheet = None
slider_max_tokens = None
def debug_print(message: str):
print(f"[{datetime.datetime.now().isoformat()}] {message}", flush=True)
def initialize_tokenizer():
try:
return AutoTokenizer.from_pretrained("gpt2")
except Exception as e:
debug_print("Failed to initialize tokenizer: " + str(e))
return None
global_tokenizer = initialize_tokenizer()
def count_tokens(text: str) -> int:
if global_tokenizer:
try:
return len(global_tokenizer.encode(text))
except Exception:
return len(text.split())
return len(text.split())
def get_model_pricing(model_name: str):
"""Return pricing information for models."""
model_pricing = {
"GPT-3.5": {"USD": {"input": 0.0000005, "output": 0.0000015}, "RON": {"input": 0.0000023, "output": 0.0000069}},
"GPT-4o": {"USD": {"input": 0.0000025, "output": 0.00001}, "RON": {"input": 0.0000115, "output": 0.000046}},
"GPT-4o mini": {"USD": {"input": 0.00000015, "output": 0.0000006}, "RON": {"input": 0.0000007, "output": 0.0000028}},
"o1-mini": {"USD": {"input": 0.0000011, "output": 0.0000044}, "RON": {"input": 0.0000051, "output": 0.0000204}},
"o3-mini": {"USD": {"input": 0.0000011, "output": 0.0000044}, "RON": {"input": 0.0000051, "output": 0.0000204}},
"Meta-Llama-3": {"USD": {"input": 0.00, "output": 0.00}, "RON": {"input": 0.00, "output": 0.00}},
"Mistral-API": {"USD": {"input": 0.00, "output": 0.00}, "RON": {"input": 0.00, "output": 0.00}}
}
return model_pricing.get(model_name, {"USD": {"input": 0.00, "output": 0.00}, "RON": {"input": 0.00, "output": 0.00}})
def get_model_max_tokens(model_name: str) -> int:
"""Return the max context length for the selected model."""
model_token_limits = {
"GPT-3.5": 16385,
"GPT-4o": 128000,
"GPT-4o mini": 128000,
"Meta-Llama-3": 4096,
"Mistral-API": 128000,
"o1-mini": 128000,
"o3-mini": 128000
}
for key in model_token_limits:
if key in model_name:
return model_token_limits[key]
return 4096 # Default safety limit
def generate_response(prompt: str, model_name: str, sheet_data: str = "") -> str:
global slider_max_tokens
full_prompt = f"{prompt}\n\nSheet Data:\n{sheet_data}" if sheet_data else prompt
max_context_tokens = get_model_max_tokens(model_name)
max_tokens = min(slider_max_tokens, max_context_tokens)
# Extract base model name for API calls and pricing
base_model_name = model_name.split()[1] if len(model_name.split()) > 1 else model_name
try:
if "Mistral" in model_name:
mistral_api_key = os.getenv("MISTRAL_API_KEY")
if not mistral_api_key:
raise ValueError("MISTRAL_API_KEY environment variable not set.")
mistral_client = Mistral(api_key=mistral_api_key)
response = mistral_client.chat.complete(
model="mistral-small-latest",
messages=[{"role": "user", "content": full_prompt}],
temperature=0.7,
top_p=0.95
)
return f"[Model: {model_name}]" + response.choices[0].message.content
elif "Meta-Llama" in model_name:
hf_api_token = os.getenv("HF_API_TOKEN")
if not hf_api_token:
raise ValueError("HF_API_TOKEN environment variable not set.")
client = InferenceClient(token=hf_api_token)
response = client.text_generation(
full_prompt,
model="meta-llama/Meta-Llama-3-8B-Instruct",
temperature=0.7,
top_p=0.95,
max_new_tokens=max_tokens
)
return f"[Model: {model_name}]" + response
elif any(model in model_name for model in ["GPT-3.5", "GPT-4o", "o1-mini", "o3-mini"]):
model_map = {
"GPT-3.5": "gpt-3.5-turbo",
"GPT-4o": "gpt-4o",
"GPT-4o mini": "gpt-4o-mini",
"o1-mini": "gpt-4o-mini",
"o3-mini": "gpt-4o-mini"
}
model = next((model_map[key] for key in model_map if key in model_name), None)
if not model:
raise ValueError(f"Unsupported OpenAI model: {model_name}")
openai.api_key = os.getenv("OPEN_API_KEY")
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": full_prompt}],
temperature=0.7,
max_tokens=max_tokens
)
# Count input tokens to estimate input cost
input_tokens = count_tokens(full_prompt)
# Count output tokens
output_tokens = count_tokens(response["choices"][0]["message"]["content"])
# Get pricing information
pricing = get_model_pricing(base_model_name)
# Calculate per-token pricing
per_token_pricing = (
f" (${input_tokens * pricing['USD']['input']:.3f}/in, "
f"${output_tokens * pricing['USD']['output']:.3f}/out | "
f"{input_tokens * pricing['RON']['input']:.3f} RON/in, "
f"{output_tokens * pricing['RON']['output']:.3f} RON/out)"
)
return f"[Model: {model_name}{per_token_pricing}]" + response["choices"][0]["message"]["content"]
except Exception as e:
debug_print(f"β Error generating response: {str(e)}")
return f"[Model: {model_name}][Error] {str(e)}"
def process_query(prompt: str, model_name: str):
global sheet_data
# Handle the case where sheet_data might be None
if sheet_data is None:
sheet_data = get_sheet_data()
full_prompt = f"{prompt}\n\nSheet Data:\n{sheet_data}" # Append sheet data to prompt
debug_print(f"Processing query with model {model_name}: {full_prompt}")
# Generate the response using the specified model and sheet data
response = generate_response(prompt, model_name, sheet_data)
# Count the number of tokens for input and output
input_tokens = count_tokens(prompt + "\n\n" + sheet_data) # Include sheet data in the input token count
output_tokens = count_tokens(response)
# Return the response along with token counts
return response, f"Input tokens: {input_tokens}", f"Output tokens: {output_tokens}"
# ------------------------------
# Global variables for background jobs
# ------------------------------
jobs = {}
results_queue = queue.Queue()
last_job_id = None
# ------------------------------
# Job management functions
# ------------------------------
def get_job_list():
job_list_md = "### π Submitted Jobs\n\n"
if not jobs:
return "No jobs found. Submit a query or load files to create jobs."
# Sort jobs by start time (newest first)
sorted_jobs = sorted(
[(job_id, job_info) for job_id, job_info in jobs.items()],
key=lambda x: x[1].get("start_time", 0),
reverse=True
)
for job_id, job_info in sorted_jobs:
status = job_info.get("status", "unknown")
job_type = job_info.get("type", "unknown")
query = job_info.get("query", "")
start_time = job_info.get("start_time", 0)
time_str = datetime.datetime.fromtimestamp(start_time).strftime("%Y-%m-%d %H:%M:%S")
# Create a shortened query preview
query_preview = query[:30] + "..." if query and len(query) > 30 else query or "N/A"
# Color-code the status display
if status == "processing":
status_formatted = f"<span style='color: red'>β³ {status}</span>"
elif status == "completed":
status_formatted = f"<span style='color: green'>β
{status}</span>"
else:
status_formatted = f"<span style='color: orange'>β {status}</span>"
if job_type == "query":
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - Query: {query_preview}\n"
else:
job_list_md += f"- [{job_id}](javascript:void) - {time_str} - {status_formatted} - File Load Job\n"
return job_list_md
def get_sheet_data():
global sheet_data
global file_name
global sheet
file = file_name
sheet_name = sheet
print ("file name: ",file," sheet name: ",sheet_name," ")
if sheet_data is None:
try:
df = pd.read_excel(file.name, sheet_name=sheet_name)
sheet_data = df.to_string(index=False) # Convert sheet data to string format
return sheet_data # Display sheet data in UI
except Exception as e:
return f"Error reading sheet: {str(e)}"
else:
return sheet_data
# Assuming process_in_background is using threading to call process_query
def process_in_background(job_id, func, args):
"""Runs a function in the background and stores its result in a shared queue."""
result = func(*args)
results_queue.put((job_id, result))
debug_print(f"Job {job_id} finished processing in background.")
def submit_query_async(query, model_choice, max_tokens_slider):
"""Asynchronous version of submit_query_updated to prevent timeouts."""
global last_job_id
global sheet_data
global slider_max_tokens
slider_max_tokens = max_tokens_slider
if not query:
return ("Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0", "", "", get_job_list())
job_id = str(uuid.uuid4())
debug_print(f"Starting async job {job_id} for query: {query}")
# Handle the case where sheet_data might be None
if sheet_data is None:
sheet_data = get_sheet_data()
query = f"{query}\n\nSheet Data:\n{sheet_data}" # Append sheet data to prompt
# Start background thread to process the query
threading.Thread(
target=process_in_background,
args=(job_id, process_query, [query, model_choice or "Mistral-API"])
).start()
jobs[job_id] = {
"status": "processing",
"type": "query",
"start_time": time.time(),
"query": query,
"model": model_choice or "Mistral-API"
}
last_job_id = job_id
return (
f"π Query submitted and processing in the background (Job ID: {job_id}).\n\n"
f"Use the 'Check Job Status' section to view results.",
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(query)}",
"Output tokens: pending",
job_id, # For UI job id update
query, # For UI query display update
get_job_list() # Updated job list
)
def job_selected(job_id):
if job_id in jobs:
return job_id, jobs[job_id].get("query", "No query for this job")
return job_id, "Job not found"
def refresh_job_list():
return get_job_list()
def sync_model_dropdown(value):
return value
def check_job_status(job_id):
if not job_id:
html_response = "<div style='font-family: monospace;'><p>Please enter a job ID.</p></div>"
return html_response, "", "", "", ""
# Process any completed jobs in the results queue
try:
while not results_queue.empty():
completed_id, result = results_queue.get_nowait()
if completed_id in jobs:
jobs[completed_id]["status"] = "completed"
jobs[completed_id]["result"] = result
jobs[completed_id]["end_time"] = time.time()
debug_print(f"Job {completed_id} completed and stored in jobs dictionary")
except queue.Empty:
pass
if job_id not in jobs:
html_response = "<div style='font-family: monospace;'><p>Job not found. Please check the ID and try again.</p></div>"
return html_response, "", "", "", ""
job = jobs[job_id]
job_query = job.get("query", "No query available for this job")
if job["status"] == "processing":
elapsed_time = time.time() - job["start_time"]
html_response = (
f"<div style='font-family: monospace;'>"
f"<p><strong>β³ Query is still being processed</strong> (elapsed: {elapsed_time:.1f}s). Please check again shortly.</p>"
f"</div>"
)
return (
html_response,
f"Job ID: {job_id}",
f"Input tokens: {count_tokens(job.get('query', ''))}",
"Output tokens: pending",
job_query
)
if job["status"] == "completed":
result = job["result"]
processing_time = job["end_time"] - job["start_time"]
html_response = (
f"<div style='font-family: monospace;'>"
f"<p><strong>β
Response:</strong> {result[0]}</p>"
f"<p>Processing time: {processing_time:.1f}s</p>"
f"</div>"
)
return (
html_response,
f"Job ID: {job_id}",
result[1],
result[2],
job_query
)
html_response = f"<div style='font-family: monospace;'><p>Job status: {job['status']}</p></div>"
return html_response, "", "", "", job_query
def cleanup_old_jobs():
current_time = time.time()
to_delete = []
for job_id, job in jobs.items():
# Completed jobs older than 24 hours and processing jobs older than 48 hours will be removed.
if job["status"] == "completed" and (current_time - job.get("end_time", 0)) > 86400:
to_delete.append(job_id)
elif job["status"] == "processing" and (current_time - job.get("start_time", 0)) > 172800:
to_delete.append(job_id)
for job_id in to_delete:
del jobs[job_id]
debug_print(f"Cleaned up {len(to_delete)} old jobs. {len(jobs)} jobs remaining.")
return f"Cleaned up {len(to_delete)} old jobs", "", ""
# Function to run query (dummy function)
def run_query(max_value):
# Simulate a data retrieval or processing function
return [[i, i**2] for i in range(1, max_value + 1)]
# Function to call both refresh_job_list and check_job_status using the last job ID
def periodic_update(is_checked):
interval = 3 if is_checked else None
debug_print(f"Auto-refresh checkbox is {'checked' if is_checked else 'unchecked'}, every={interval}")
if is_checked:
global last_job_id
job_list_md = refresh_job_list()
job_status = check_job_status(last_job_id) if last_job_id else ("No job ID available", "", "", "", "")
# Extract plain text from HTML for status_text
from bs4 import BeautifulSoup
html_content = job_status[0]
plain_text = ""
if html_content:
soup = BeautifulSoup(html_content, "html.parser")
plain_text = soup.get_text()
# Return all expected outputs, including status_text
return job_list_md, job_status[0], plain_text, job_status[1], job_status[2], job_status[3], job_status[4]
else:
# Return empty values to stop updates - make sure to match the number of expected outputs
return "", "", "", "", "", "", ""
# OAuth 2.0 Scopes
SCOPES = ["https://www.googleapis.com/auth/gmail.send"]
from google_auth_oauthlib.flow import InstalledAppFlow
from google.oauth2.credentials import Credentials
from google.auth.transport.requests import Request
import os
import json
def get_gmail_credentials():
global oauth_flow
creds = None
# Fetch client secrets from environment variables
client_id = os.environ.get("HF_GOOGLE_CLIENT_ID")
client_secret = os.environ.get("HF_GOOGLE_CLIENT_SECRET")
if not client_id or not client_secret:
raise ValueError("Missing Gmail OAuth credentials in environment variables.")
# Define the redirect URI for your Hugging Face space
redirect_uri = "https://huggingface.co/spaces/alx-d/scout/oauth2callback"
# Load credentials from token.json if available
if os.path.exists(token_path):
creds = Credentials.from_authorized_user_file(token_path)
# If no valid credentials, log in via OAuth
if not creds or not creds.valid:
if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:
client_config = {
"web": {
"client_id": client_id,
"project_id": "your_project_id",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_secret": client_secret,
"redirect_uris": [redirect_uri]
}
}
oauth_flow = Flow.from_client_config(client_config, SCOPES, redirect_uri=redirect_uri)
auth_url, _ = oauth_flow.authorization_url(
prompt='consent',
access_type='offline',
include_granted_scopes='true'
)
return None, auth_url
return creds, None
# Add email sending function
def send_email(email_address, content, is_formatted=True):
if not email_address or "@" not in email_address:
return "Please enter a valid email address"
try:
creds = get_gmail_credentials()
service = build("gmail", "v1", credentials=creds)
# Create email message with appropriate MIME type
msg = MIMEMultipart()
msg["to"] = email_address
msg["subject"] = "Scouting AI Report"
msg.attach(MIMEText(content, "html" if is_formatted else "plain"))
# Encode email message in base64
encoded_msg = base64.urlsafe_b64encode(msg.as_bytes()).decode()
send_message = {"raw": encoded_msg}
# Send email using Gmail API
service.users().messages().send(userId="me", body=send_message).execute()
return "Email sent successfully via Gmail API!"
except Exception as e:
return f"Failed to send email: {str(e)}"
# Function to copy content to clipboard
def copy_to_clipboard(content):
import pyperclip
pyperclip.copy(content)
return "Copied to clipboard!"
# Function to convert HTML to plain text using BeautifulSoup
def copy_plain_text(html_content):
try:
from bs4 import BeautifulSoup
except ImportError:
return "Error: BeautifulSoup is required to convert HTML to plain text. Please install it."
soup = BeautifulSoup(html_content, "html.parser")
plain_text = soup.get_text()
import pyperclip
pyperclip.copy(plain_text)
return "Copied to clipboard!"
# Default prompt template
default_prompt = """
You are a scout who has played against this player, and you are analyzing the following statistics.
Create a scouting report for the head coach, detailing:
1) The player's strengths, along with a strategy to counter those strengths.
2) The player's weaknesses, and how we can exploit those weaknesses based on the stats.
Present the report in a way that is easy to read, combining each strength with its corresponding counter-strategy, and each weakness with an exploitation plan.
At the end of the report, include a βKey Points to Emphasizeβ section.
Use HTML formatting for the output, and apply a dark color palette (e.g., dark green, dark red, dark gray) for different sections to enhance visual readability.
"""
# ------------------------------
# Gradio UI Layout: Scouting AI App
# ------------------------------
with gr.Blocks() as app:
# App Title and Description
gr.Markdown("## π Scouting AI App")
gr.Markdown("Welcome to the Scouting AI App! Upload your files, submit queries, and check job statuses easily. Game on! π")
# Two-column layout for top section (File Load and Job Information)
with gr.Row():
# Left Column: File Load Section (50% width)
with gr.Column(scale=1):
gr.Markdown("### π Load File Section")
gr.Markdown("Upload your **.xlsm** file below, specify the sheet name, and click *Load Sheet* to process your file.")
file_input = gr.File(label="Upload .xlsm File")
sheet_input_file = gr.Textbox(label="Sheet Name")
load_button_file = gr.Button("Load Sheet")
sheet_output_file = gr.Textbox(label="Sheet Info", interactive=False)
# Right Column: Job Information Section (50% width)
with gr.Column(scale=1):
gr.Markdown("### π Job Information")
gr.Markdown("View all submitted jobs, refresh the list, and check the status of individual jobs.")
# Fixed-height job list with scrollbar
job_list_display = gr.Markdown(
get_job_list(),
elem_id="job-list-display",
elem_classes=["scrollable-job-list"]
)
# Add CSS for scrollable job list
gr.HTML("""
<style>
.scrollable-job-list {
height: 220px;
overflow-y: auto;
border: 1px solid #ccc;
padding: 10px;
margin-bottom: 10px;
}
</style>
""")
refresh_button = gr.Button("Refresh Job List")
gr.Markdown("#### π Check Job Status")
job_id_input = gr.Textbox(label="Enter Job ID")
check_status_button = gr.Button("Check Job Status")
# Submit Query Section (left column, below File Load)
with gr.Row():
# Left Column: Submit Query Section
with gr.Column(scale=1):
gr.Markdown("### π Submit Query")
gr.Markdown("Enter your prompt below and choose a model. Your query will be processed in the background.")
# Update the model dropdown in the Gradio UI
# Update the model dropdown in the Gradio UI
model_dropdown = gr.Dropdown(
choices=[
"πΊπΈ GPT-3.5",
"πΊπΈ GPT-4o",
"πΊπΈ GPT-4o mini",
"πΊπΈ o1-mini",
"πΊπΈ o3-mini",
"πΊπΈ Remote Meta-Llama-3",
"πͺπΊ Mistral-API",
],
value="πΊπΈ GPT-4o mini", # Default model set to Mistral
label="Select Model"
)
max_tokens_slider = gr.Slider(minimum=200, maximum=4096, value=1200, label="π’ Max Tokens", step=50)
prompt_input = gr.Textbox(label="Enter your prompt", value=default_prompt, lines=6)
with gr.Row():
auto_refresh_checkbox = gr.Checkbox(
label="Enable Auto Refresh",
value=False # Default to unchecked
)
submit_button = gr.Button("Submit Query ")
# Use a Checkbox to control the periodic updates
# Add a textarea to store the plain text version for copying
status_text = gr.Textbox(label="Response Text ", visible=True)
response_output = gr.Textbox(label="Response", interactive=False)
token_info = gr.Textbox(label="Token Info", interactive=False)
# Add buttons for copying and sending email
# with gr.Row():
# copy_btn = gr.Button("π Copy Text")
# Add buttons for copying and sending email
# with gr.Row():
# copy_plain_button = gr.Button("π Copy Plain Text")
# copy_formatted_button = gr.Button("π Copy Formatted")
# with gr.Row():
# email_input = gr.Textbox(label="Email Address")
# send_email_button = gr.Button("π§ Send Report")
# email_status = gr.Textbox(label="Status", interactive=False)
# Job Status Output in right column
with gr.Column(scale=1):
# Change Job Status output to an HTML component for proper formatting
status_output = gr.HTML(label="Job Status", interactive=False)
job_id_display = gr.Textbox(label="Job ID", interactive=False)
input_tokens_display = gr.Textbox(label="Input Tokens", interactive=False)
output_tokens_display = gr.Textbox(label="Output Tokens", interactive=False)
job_query_display = gr.Textbox(label="Job Query", interactive=False)
# ------------------------------
# Set up interactions
# ------------------------------
# Load file interaction (dummy function for now)
def load_file(file, sheet_name):
global sheet_data
global file_name
file_name = file
sheet = sheet_name
if file is None or sheet_name.strip() == "":
return "Please upload a file and enter a valid sheet name."
try:
df = pd.read_excel(file.name, sheet_name=sheet_name)
sheet_data = df.to_string(index=False) # Convert sheet data to string format
return sheet_data # Display sheet data in UI
except Exception as e:
return f"Error reading sheet: {str(e)}"
load_button_file.click(
fn=load_file,
inputs=[file_input, sheet_input_file],
outputs=sheet_output_file
)
# When submitting a query asynchronously
submit_button.click(
fn=submit_query_async,
inputs=[prompt_input, model_dropdown, max_tokens_slider],
outputs=[
response_output, token_info,
input_tokens_display, output_tokens_display,
job_id_input, job_query_display, job_list_display
]
)
# Check job status interaction
check_status_button.click(
fn=check_job_status,
inputs=[job_id_input],
outputs=[status_output, job_id_display, input_tokens_display,
output_tokens_display, job_query_display]
)
# Refresh the job list
refresh_button.click(
fn=refresh_job_list,
inputs=[],
outputs=job_list_display
)
# Use the Checkbox to control the periodic updates
auto_refresh_checkbox.change(
fn=periodic_update,
inputs=[auto_refresh_checkbox],
outputs=[job_list_display, status_output, status_text, job_id_display, input_tokens_display, output_tokens_display, job_query_display],
every=3
)
# Connect the copy button to show the text in the textbox and make it visible temporarily
def show_copy_text(text):
# Simply return the text value and make the component visible
return gr.update(value=text, visible=True)
# Set up the event handlers
# copy_btn.click(fn=show_copy_text, inputs=status_text, outputs=status_text)
# Copy and email buttons
# copy_plain_button.click(fn=copy_plain_text, inputs=[status_output], outputs=[email_status])
# copy_formatted_button.click(fn=copy_to_clipboard, inputs=[status_output], outputs=[email_status])
# send_email_button.click(fn=send_email, inputs=[email_input, status_output], outputs=[email_status])
if __name__ == "__main__":
debug_print("Launching Gradio UI...")
app.queue().launch(share=False)
|