File size: 8,143 Bytes
b0a6f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""Fetch blockchain data - supports both complete historical data and API fallback"""

import requests
import pandas as pd
from datetime import datetime, timedelta
import os


# Global cache for complete blockchain data
_BLOCKCHAIN_DATA_CACHE = None
COMPLETE_DATA_FILE = 'blockchain_data_complete.csv'


def load_complete_blockchain_data(force_reload=False):
    """
    Load the complete blockchain data CSV (one-time load, then cached in memory)
    
    Parameters:
    -----------
    force_reload : bool
        Force reload from disk even if cached
    
    Returns:
    --------
    pd.DataFrame or None
        Complete blockchain data with columns: date, bitcoin_price, difficulty, fees, hashrate, revenue, block_reward, days_since_halving
    """
    global _BLOCKCHAIN_DATA_CACHE
    
    # Return cached data if available
    if _BLOCKCHAIN_DATA_CACHE is not None and not force_reload:
        return _BLOCKCHAIN_DATA_CACHE
    
    # Check if file exists
    if not os.path.exists(COMPLETE_DATA_FILE):
        print(f"\nโš ๏ธ  WARNING: {COMPLETE_DATA_FILE} not found!")
        print("   Falling back to API (limited to recent data)...")
        return None
    
    # Load from CSV
    print(f"๐Ÿ“‚ Loading complete blockchain data from {COMPLETE_DATA_FILE}...")
    df = pd.read_csv(COMPLETE_DATA_FILE)
    df['date'] = pd.to_datetime(df['date'])
    
    # Cache it in memory
    _BLOCKCHAIN_DATA_CACHE = df
    
    print(f"โœ… Loaded {len(df):,} rows of data")
    print(f"   Date range: {df['date'].min().date()} to {df['date'].max().date()}")
    
    return df


def get_blockchain_data_for_date(target_date, window_size=30):
    """
    Get blockchain data for a specific date (includes window_size days before)
    
    Parameters:
    -----------
    target_date : str or datetime
        Target prediction date
    window_size : int
        Number of days needed before target_date (default: 30)
    
    Returns:
    --------
    pd.DataFrame
        Blockchain data from (target_date - window_size) to target_date
    """
    
    # Load complete data
    complete_df = load_complete_blockchain_data()
    
    if complete_df is None:
        # Fallback to API
        return get_latest_blockchain_data(days=90)
    
    # Convert target_date to datetime
    if isinstance(target_date, str):
        target_date = pd.to_datetime(target_date)
    
    # Calculate start date (need window_size days before target)
    start_date = target_date - timedelta(days=window_size + 10)  # +10 buffer for safety
    
    # Filter to date range
    mask = (complete_df['date'] >= start_date) & (complete_df['date'] <= target_date)
    filtered_df = complete_df[mask].copy().reset_index(drop=True)
    
    if len(filtered_df) < window_size:
        print(f"โš ๏ธ  WARNING: Not enough data for {target_date.date()}")
        print(f"   Need {window_size} days, got {len(filtered_df)}")
    
    return filtered_df


def get_latest_blockchain_data(days=90):
    """
    Get the most recent N days of blockchain data
    Compatible with original function signature
    
    Parameters:
    -----------
    days : int
        Number of days to fetch (from today backward)
    
    Returns:
    --------
    pd.DataFrame
        Blockchain data for the last N days
    """
    
    # Try to load complete data first
    complete_df = load_complete_blockchain_data()
    
    if complete_df is not None:
        # Get last N days from complete data
        end_date = complete_df['date'].max()
        start_date = end_date - timedelta(days=days)
        
        mask = (complete_df['date'] >= start_date) & (complete_df['date'] <= end_date)
        filtered_df = complete_df[mask].copy().reset_index(drop=True)
        
        return filtered_df
    else:
        # Fallback to API if complete data not available
        print("๐Ÿ“ก Falling back to API...")
        return get_latest_blockchain_data_from_api(days)


def get_latest_blockchain_data_from_api(days=90):
    """
    Fallback: Fetch from API if complete data file not available
    (Original implementation)
    """
    
    data_types = {
        'bitcoin_price': 'market-price',
        'difficulty': 'difficulty',
        'fees': 'transaction-fees',
        'hashrate': 'hash-rate',
        'revenue': 'miners-revenue'
    }
    
    timespan = f'{days}days'
    all_data = {}
    
    for name, chart_name in data_types.items():
        url = f'https://api.blockchain.info/charts/{chart_name}'
        params = {'timespan': timespan, 'format': 'json'}
        
        try:
            response = requests.get(url, params=params, timeout=30)
            response.raise_for_status()
            values = response.json().get('values', [])
            
            df_temp = pd.DataFrame(values)
            df_temp['x'] = pd.to_datetime(df_temp['x'], unit='s')
            df_temp = df_temp.set_index('x').rename(columns={'y': name})
            all_data[name] = df_temp
        except Exception as e:
            print(f"โŒ Failed to fetch {name}: {e}")
            return None
    
    # Merge all
    merged_df = all_data['bitcoin_price']
    for name in ['difficulty', 'fees', 'hashrate', 'revenue']:
        merged_df = merged_df.join(all_data[name], how='outer')
    
    merged_df = merged_df.reset_index().rename(columns={'x': 'date'})
    merged_df = merged_df.sort_values('date').reset_index(drop=True)
    
    # Add block reward
    merged_df['block_reward'] = merged_df['date'].apply(calculate_block_reward)
    
    # Add days since halving
    merged_df['days_since_halving'] = merged_df['date'].apply(get_days_since_halving)
    
    return merged_df


def calculate_block_reward(date):
    """Calculate block reward based on halving schedule"""
    if pd.isna(date):
        return None
    elif date < pd.Timestamp('2012-11-28'):
        return 50
    elif date < pd.Timestamp('2016-07-09'):
        return 25
    elif date < pd.Timestamp('2020-05-11'):
        return 12.5
    elif date < pd.Timestamp('2024-04-20'):
        return 6.25
    else:
        return 3.125


def get_days_since_halving(date):
    """Calculate days since most recent halving"""
    halving_dates = [
        pd.Timestamp('2012-11-28'),
        pd.Timestamp('2016-07-09'),
        pd.Timestamp('2020-05-11'),
        pd.Timestamp('2024-04-20'),
    ]
    
    recent_halving = None
    for halving in halving_dates:
        if date >= halving:
            recent_halving = halving
    
    if recent_halving is None:
        return 0
    
    return (date - recent_halving).days


if __name__ == "__main__":
    print("Testing blockchain data loading...\n")
    
    # Test 1: Load complete data
    print("="*80)
    print("TEST 1: Load complete blockchain data")
    print("="*80)
    df_complete = load_complete_blockchain_data()
    
    if df_complete is not None:
        print(f"\nโœ… Successfully loaded {len(df_complete):,} rows")
        print(f"   Date range: {df_complete['date'].min().date()} to {df_complete['date'].max().date()}")
        print(f"   Columns: {list(df_complete.columns)}")
    else:
        print("\nโš ๏ธ  Complete data not available")
    
    # Test 2: Get data for specific date
    print("\n" + "="*80)
    print("TEST 2: Get data for specific date (2021-06-01)")
    print("="*80)
    df_2021 = get_blockchain_data_for_date('2021-06-01', window_size=30)
    
    if df_2021 is not None:
        print(f"\nโœ… Got {len(df_2021)} days")
        print(f"   Date range: {df_2021['date'].min().date()} to {df_2021['date'].max().date()}")
        print(f"   Bitcoin price on 2021-06-01: ${df_2021[df_2021['date'].dt.date == pd.to_datetime('2021-06-01').date()]['bitcoin_price'].values[0]:,.2f}")
    
    # Test 3: Get latest 90 days
    print("\n" + "="*80)
    print("TEST 3: Get latest 90 days")
    print("="*80)
    df_latest = get_latest_blockchain_data(days=90)
    
    if df_latest is not None:
        print(f"\nโœ… Got {len(df_latest)} days")
        print(f"   Date range: {df_latest['date'].min().date()} to {df_latest['date'].max().date()}")
    
    print("\n" + "="*80)
    print("โœ… ALL TESTS PASSED")
    print("="*80)