File size: 3,684 Bytes
f481275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import numpy as np


class SpectralFeatureExtractor(nn.Module):
    def __init__(self, num_features):
        super().__init__()
        self.complex_weight = nn.Parameter(torch.randn(num_features, 2, dtype=torch.float32) * 0.02)

    def forward(self, x):
        B, L, C = x.shape
        x = x.transpose(1, 2)
        x_fft = torch.fft.rfft(x, dim=2, norm="ortho")
        weight = torch.view_as_complex(self.complex_weight)
        x_weighted = x_fft * weight.unsqueeze(0).unsqueeze(-1)
        x_out = torch.fft.irfft(x_weighted, n=L, dim=2, norm="ortho")
        return x_out.transpose(1, 2)


class ChannelMixing(nn.Module):
    def __init__(self, num_features, reduction=4):
        super().__init__()
        self.fc1 = nn.Linear(num_features, num_features // reduction)
        self.fc2 = nn.Linear(num_features // reduction, num_features)
        self.act = nn.GELU()

    def forward(self, x):
        identity = x
        x_pooled = x.mean(dim=1)
        x_weighted = self.fc2(self.act(self.fc1(x_pooled)))
        out = identity * x_weighted.unsqueeze(1)
        return out


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000, dropout=0.2):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
        
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[:, : x.size(1), :]
        return self.dropout(x)


class MineROINet(nn.Module):
    def __init__(self, input_dim, d_model=64, nhead=2, num_layers=2, dim_feedforward=256, dropout=0.2, num_classes=3, seq_len=30):
        super().__init__()
        
        self.spectral = SpectralFeatureExtractor(input_dim)
        self.channel_mix = ChannelMixing(input_dim)
        self.input_projection = nn.Linear(input_dim, d_model) if input_dim != d_model else nn.Identity()
        self.pos_encoder = PositionalEncoding(d_model, max_len=seq_len, dropout=dropout)
        
        encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, 
                                                     dropout=dropout, activation="gelu", batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        
        self.classifier = nn.Sequential(
            nn.LayerNorm(d_model),
            nn.Dropout(dropout),
            nn.Linear(d_model, d_model // 2),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(d_model // 2, num_classes),
        )

    def forward(self, seq):
        seq = self.spectral(seq)
        seq = self.channel_mix(seq)
        seq = self.input_projection(seq)
        seq = self.pos_encoder(seq)
        z = self.transformer_encoder(seq)
        pooled = z.mean(dim=1)
        out = self.classifier(pooled)
        return out


def create_model_30day(input_dim, num_classes=3):
    return MineROINet(input_dim=input_dim, d_model=64, nhead=2, num_layers=2, 
                       dim_feedforward=256, dropout=0.2, num_classes=num_classes, seq_len=30)


# def create_model_60day(input_dim, num_classes=3):
#     return MineROINet(input_dim=input_dim, d_model=64, nhead=4, num_layers=2, 
#                        dim_feedforward=256, dropout=0.2, num_classes=num_classes, seq_len=60)