import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Load tokenizer and model manually tokenizer = AutoTokenizer.from_pretrained("microsoft/bitnet-b1.58-2B-4T") model = AutoModelForCausalLM.from_pretrained( "microsoft/bitnet-b1.58-2B-4T", torch_dtype=torch.float16, device_map="auto" # uses GPU if available ) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=100, do_sample=True, temperature=0.7, top_p=0.9, ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio UI gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Manual DeepSeek").launch()