|
|
import gradio as gr |
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
MODEL_ID = "Akashpb13/xlsr_kurmanji_kurdish" |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
transcriber = pipeline( |
|
|
"automatic-speech-recognition", |
|
|
model=MODEL_ID, |
|
|
|
|
|
) |
|
|
except Exception as e: |
|
|
|
|
|
gr.Warning(f"Failed to load model: {e}") |
|
|
transcriber = None |
|
|
|
|
|
|
|
|
|
|
|
def transcribe_audio(audio_file_path): |
|
|
if audio_file_path is None: |
|
|
return "Please provide an audio input." |
|
|
|
|
|
if transcriber is None: |
|
|
return "Error: Model failed to initialize." |
|
|
|
|
|
|
|
|
result = transcriber(audio_file_path) |
|
|
return result["text"] |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=transcribe_audio, |
|
|
inputs=gr.Audio( |
|
|
sources=["microphone", "upload"], |
|
|
type="filepath", |
|
|
label="Kurmanji Audio Input" |
|
|
), |
|
|
outputs=gr.Textbox(label="Kurmanji Transcription Result"), |
|
|
title="Kurmanji ASR Demo", |
|
|
description="Automatic Speech Recognition for Kurmanji using a fine-tuned Hugging Face Transformer model." |
|
|
) |
|
|
|
|
|
|
|
|
demo.launch() |