import streamlit as st import tensorflow as tf import tensorflow_hub as hub new_model = tf.keras.models.load_model("Fake news nlp model.h5",custom_objects={"KerasLayer": hub.KerasLayer}) def welcome(): return "Welcome to my app" def main(): st.title("Fake News Detection App") st.write( "This app will tell you if mention news is Fake or Real by using Natural Language Processing") html_temp = """

Fake News Detector

""" st.markdown(html_temp, unsafe_allow_html=True) text = st.text_input("Enter your News") if st.button("Predict"): pred_prob = new_model.predict([text]) predict = tf.squeeze(tf.round(pred_prob)).numpy() st.subheader("AI thinks that ...") if predict > 0: st.success( f"It's Real news, you can trust it. Confidence Level is {tf.round(pred_prob,3)*100}%",icon="✅") else: st.warning( f"Beware!! It's a Fake News. Confidence Level is {tf.round(100 - pred_prob,2)}%", icon="⚠️") if st.button("About"): st.text("Built with Streamlit") if __name__ == '__main__': main()