Spaces:
Sleeping
Sleeping
File size: 20,538 Bytes
3b528f9 b15f0c7 635694f 6ba5ea6 635694f b15f0c7 094ee23 635694f 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 b15f0c7 635694f 6ba5ea6 635694f b15f0c7 635694f 6ba5ea6 635694f b15f0c7 635694f b15f0c7 635694f a9b23f3 635694f b15f0c7 635694f a9b23f3 635694f 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 635694f 094ee23 635694f 094ee23 635694f 094ee23 635694f b15f0c7 635694f a9b23f3 635694f a9b23f3 635694f a9b23f3 635694f b15f0c7 635694f b15f0c7 635694f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import streamlit as st
import os
import yt_dlp
import subprocess
import librosa
import numpy as np
import torch
from speechbrain.inference.classifiers import EncoderClassifier
from transformers import AutoProcessor, AutoModelForAudioClassification
from dotenv import load_dotenv
import matplotlib.pyplot as plt
import tempfile
import time
# Comment for deployment instructions:
# To deploy this app:
# 1. Make sure Docker is installed
# 2. Build the Docker image: docker build -t accent-detector .
# 3. Run the container: docker run -p 8501:8501 accent-detector
# 4. Access the app at http://localhost:8501
#
# For cloud deployment:
# - Streamlit Cloud: Connect your GitHub repository to Streamlit Cloud
# - Hugging Face Spaces: Use the Docker deployment option
# - Azure/AWS/GCP: Deploy the container using their container services
# Load environment variables (if .env file exists)
try:
load_dotenv()
except:
pass
# Check for OpenAI API access - optional for enhanced explanations
try:
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
have_openai = openai.api_key is not None
except (ImportError, AttributeError):
have_openai = False
# English accent categories
ENGLISH_ACCENTS = {
"en-us": "American English",
"en-gb": "British English",
"en-au": "Australian English",
"en-ca": "Canadian English",
"en-ie": "Irish English",
"en-scotland": "Scottish English",
"en-in": "Indian English",
"en-za": "South African English",
"en-ng": "Nigerian English",
"en-caribbean": "Caribbean English",
}
def download_video(url, video_path="video.mp4", cookies_file=None):
"""Download a video from a URL"""
ydl_opts = {
"outtmpl": video_path,
"quiet": False,
"no_warnings": False,
"verbose": True # More detailed output for debugging
}
# Only use cookies if explicitly provided via file upload
# Don't try to access browser cookies in Docker container
if cookies_file and os.path.exists(cookies_file):
ydl_opts["cookiefile"] = cookies_file
try:
# Special handling for YouTube URLs to try without cookies first
is_youtube = "youtube" in url.lower() or "youtu.be" in url.lower()
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
if os.path.exists(video_path):
return True
else:
st.error(f"Video downloaded but file not found: {video_path}")
return False
except Exception as e:
error_msg = str(e)
st.error(f"Download error: {error_msg}")
# Provide specific guidance based on error type
if is_youtube and ("bot" in error_msg.lower() or "sign in" in error_msg.lower()):
st.warning("YouTube requires authentication. Please upload a cookies.txt file or try a direct video link.")
elif "not find" in error_msg.lower() and "cookies" in error_msg.lower():
st.warning("Browser cookies could not be accessed. Please upload a cookies.txt file.")
elif "network" in error_msg.lower() or "timeout" in error_msg.lower():
st.warning("Network error. Please check your internet connection and try again.")
return False
def extract_audio(video_path="video.mp4", audio_path="audio.wav"):
"""Extract audio from video file using ffmpeg"""
try:
subprocess.run(
['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', '-ac', '1', audio_path],
check=True,
capture_output=True
)
return os.path.exists(audio_path)
except subprocess.CalledProcessError as e:
st.error(f"Error extracting audio: {e}")
st.error(f"ffmpeg output: {e.stderr.decode('utf-8')}")
raise
class AccentDetector:
def __init__(self):
# Initialize the language identification model
self.lang_id = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="tmp_model"
)
# Initialize the English accent classifier - using VoxLingua107 for now
# In production, you'd use a more specialized accent model
try:
self.model_name = "speechbrain/lang-id-voxlingua107-ecapa"
self.processor = AutoProcessor.from_pretrained(self.model_name)
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
self.have_accent_model = True
except Exception as e:
st.warning(f"Could not load accent model: {str(e)}")
self.have_accent_model = False
def is_english(self, audio_path, threshold=0.7):
"""
Determine if the speech is English and return confidence score
"""
out_prob, score, index, lang = self.lang_id.classify_file(audio_path)
score = float(score)
# Check if language is English (slightly fuzzy match)
is_english = "eng" in lang.lower() or "en-" in lang.lower() or lang.lower() == "en"
return is_english, lang, score
def classify_accent(self, audio_path):
"""
Classify the specific English accent
"""
if not self.have_accent_model:
return "Unknown English Accent", 0.0
try:
# Load and preprocess audio
audio, sr = librosa.load(audio_path, sr=16000)
inputs = self.processor(audio, sampling_rate=sr, return_tensors="pt")
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get probabilities
probs = outputs.logits.softmax(dim=-1)[0]
prediction_id = probs.argmax().item()
confidence = probs[prediction_id].item()
# Get predicted label
id2label = self.model.config.id2label
accent_code = id2label[prediction_id]
# Map to English accent if possible
if accent_code.startswith('en-'):
accent = ENGLISH_ACCENTS.get(accent_code, f"English ({accent_code})")
confidence = confidence # Keep confidence as-is for English accents
else:
# If it's not an English accent code, use our pre-classification
is_english, _, _ = self.is_english(audio_path)
if is_english:
accent = "General English"
else:
accent = f"Non-English ({accent_code})"
confidence *= 0.7 # Reduce confidence for non-specific matches
return accent, confidence
except Exception as e:
st.error(f"Error in accent classification: {str(e)}")
return "Unknown English Accent", 0.0
def generate_explanation(self, audio_path, accent, confidence, is_english, language):
"""
Generate an explanation of the accent detection results using OpenAI API (if available)
"""
if not have_openai:
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
try:
import openai
is_english, lang, lang_score = self.is_english(audio_path)
prompt = f"""
Audio analysis detected a speaker with the following characteristics:
- Primary accent/language: {accent}
- Confidence score: {confidence*100:.1f}%
- Detected language category: {lang}
- Is English: {is_english}
Based on this information, provide a 2-3 sentence summary about the speaker's accent.
Focus on how clear their English is and any notable accent characteristics.
This is for hiring purposes to evaluate English speaking abilities.
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an accent analysis specialist providing factual assessments."},
{"role": "user", "content": prompt}
],
max_tokens=150
)
return response.choices[0].message.content.strip()
except Exception as e:
st.error(f"Error generating explanation: {str(e)}")
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
def analyze_audio(self, audio_path):
"""
Complete analysis pipeline returning all needed results
"""
# Check if it's English
is_english, lang, lang_score = self.is_english(audio_path)
# Classify accent if it's English
if is_english:
accent, accent_confidence = self.classify_accent(audio_path)
english_confidence = lang_score * 100 # Scale to percentage
else:
accent = f"Non-English ({lang})"
accent_confidence = lang_score
english_confidence = max(0, min(30, lang_score * 50)) # Cap at 30% if non-English
# Generate explanation
explanation = self.generate_explanation(audio_path, accent, accent_confidence, is_english, lang)
# Create visualization of the audio waveform
try:
y, sr = librosa.load(audio_path, sr=None)
fig, ax = plt.subplots(figsize=(10, 2))
ax.plot(y)
ax.set_xlabel('Sample')
ax.set_ylabel('Amplitude')
ax.set_title('Audio Waveform')
plt.tight_layout()
audio_viz = fig
except Exception as e:
st.warning(f"Could not generate audio visualization: {str(e)}")
audio_viz = None
return {
"is_english": is_english,
"accent": accent,
"accent_confidence": accent_confidence * 100, # Scale to percentage
"english_confidence": english_confidence,
"language_detected": lang,
"explanation": explanation,
"audio_viz": audio_viz
}
def process_uploaded_audio(uploaded_file):
"""Process uploaded audio file"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_file:
temp_file.write(uploaded_file.getvalue())
audio_path = temp_file.name
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Clean up
os.unlink(audio_path)
return results
# --- Streamlit App ---
st.set_page_config(
page_title="π€ English Accent Detector",
page_icon="π€",
layout="wide"
)
st.title("π€ English Accent Detection Tool")
st.markdown("""
This application analyzes a speaker's English accent from video URLs or audio uploads,
providing detailed insights for hiring evaluation purposes.
""")
# Add container for tips
with st.container():
st.info("""
π‘ **Tips for best results:**
- Use **Loom** or **Vimeo** videos (more reliable than YouTube)
- For YouTube videos, you may need to provide cookies
- Audio clips of 15-30 seconds work best
- Clear speech with minimal background noise is ideal
""")
st.markdown("""
This app analyzes a speaker's English accent from a video or audio source.
It provides:
- Classification of the accent (British, American, etc.)
- Confidence score for English proficiency
- Explanation of accent characteristics
""")
# Create tabs for different input methods
tab1, tab2 = st.tabs(["Video URL", "Upload Audio"])
with tab1:
st.markdown("### π¬ Analyze video from URL")
url = st.text_input("Enter a public video URL",
placeholder="https://www.loom.com/..., https://vimeo.com/..., or direct MP4 link")
# Recommend alternative sources
st.caption("β οΈ **Note**: YouTube videos often require authentication. For best results, use Loom, Vimeo or direct video links.")
# Add file uploader for cookies.txt
cookies_file = None
uploaded_cookies = st.file_uploader("Upload cookies.txt file for YouTube (if needed)",
type="txt",
help="Only needed for YouTube videos that require authentication")
if uploaded_cookies is not None:
# Save the uploaded cookies file to a temporary file
cookies_file = f"cookies_{int(time.time())}.txt"
with open(cookies_file, "wb") as f:
f.write(uploaded_cookies.getbuffer())
st.success("Cookies file uploaded successfully!")
with st.expander("Having trouble with YouTube videos?"):
st.markdown("""
### YouTube Authentication Issues
YouTube's anti-bot measures often block automated video downloads. To solve this:
#### Option 1: Use Alternative Video Sources (Recommended)
These typically work without authentication issues:
- [Loom](https://www.loom.com/) - Great for screen recordings
- [Vimeo](https://vimeo.com/) - High-quality video hosting
- [Streamable](https://streamable.com/) - Simple video sharing
- Any direct MP4 link
#### Option 2: Upload Cookies for YouTube
1. Install a browser extension like [Get cookies.txt](https://chrome.google.com/webstore/detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc)
2. Login to YouTube in your browser
3. Use the extension to export cookies to a .txt file
4. Upload the cookies.txt file using the uploader above
#### Option 3: Use Audio Upload Instead
The 'Upload Audio' tab allows direct analysis of audio files without URL issues.
""")
if st.button("Analyze Video"):
if not url:
st.warning("Please enter a valid URL")
else:
try:
# Create a placeholder for status updates
status = st.empty()
# Generate unique filenames using timestamp to avoid conflicts
timestamp = str(int(time.time()))
video_path = f"video_{timestamp}.mp4"
audio_path = f"audio_{timestamp}.wav"
# Download and process the video
status.text("Downloading video...")
download_success = download_video(url, video_path, cookies_file)
if not download_success:
st.error("Failed to download video")
else:
status.text("Extracting audio...")
extract_success = extract_audio(video_path, audio_path)
if not extract_success:
st.error("Failed to extract audio")
else:
status.text("Analyzing accent... (this may take a moment)")
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Display results
st.success("β
Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
st.pyplot(results['audio_viz'])
# Show audio playback
st.audio(audio_path)
# Clean up files
try:
if os.path.exists(video_path):
os.remove(video_path)
if os.path.exists(audio_path):
os.remove(audio_path)
if cookies_file and os.path.exists(cookies_file):
os.remove(cookies_file)
except Exception as e:
st.warning(f"Couldn't clean up temporary files: {str(e)}")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
with tab2:
st.markdown("### π΅ Upload Audio File")
st.caption("**Recommended option!** Direct audio upload is more reliable than video URLs.")
uploaded_file = st.file_uploader("Upload an audio file",
type=["wav", "mp3", "m4a", "ogg", "flac"],
help="Support for WAV, MP3, M4A, OGG and FLAC formats")
if uploaded_file is not None:
# Show a preview of the audio
st.markdown("#### Audio Preview:")
st.audio(uploaded_file)
st.markdown("#### Ready for Analysis")
col1, col2 = st.columns([1, 3])
with col1:
analyze_button = st.button("Analyze Audio", type="primary", use_container_width=True)
with col2:
st.caption("Tip: 15-30 seconds of clear speech works best for accent detection")
if analyze_button:
with st.spinner("Analyzing audio... (this may take 15-30 seconds)"):
try:
results = process_uploaded_audio(uploaded_file)
# Display results
st.success("β
Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
st.pyplot(results['audio_viz'])
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
# Add footer with deployment info
st.markdown("---")
st.markdown("Deployed using Streamlit β’ Built with SpeechBrain and Transformers")
# Add a section for how it works
with st.expander("βΉοΈ How It Works"):
st.markdown("""
This app uses a multi-stage process to analyze a speaker's accent:
1. **Audio Extraction**: The audio track is extracted from the input video or directly processed from uploaded audio.
2. **Language Identification**: First, we determine if the speech is English using SpeechBrain's language identification model.
3. **Accent Classification**: For English speech, we analyze the specific accent using a transformer-based model trained on diverse accent data.
4. **English Proficiency Score**: A confidence score is calculated based on both language identification and accent clarity.
5. **Analysis Summary**: An explanation is generated describing accent characteristics relevant for hiring evaluations.
""")
|