Spaces:
Sleeping
Sleeping
File size: 16,170 Bytes
9cb0f21 09a948d b3fbad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import os
import sys
import dash
from dash import dcc, html, dash_table, callback, Input, Output, State
import dash_bootstrap_components as dbc
import pandas as pd
from datetime import datetime
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from dash.exceptions import PreventUpdate
from vincenty import vincenty
import duckdb
import requests
import urllib
from dotenv import load_dotenv
import time
from functools import wraps
import glob
# Load environment variables
load_dotenv()
# Initialize the Dash app
app = dash.Dash(
__name__,
external_stylesheets=[dbc.themes.BOOTSTRAP],
suppress_callback_exceptions=True
)
app.title = "Hail Damage Analyzer"
server = app.server
# Cache functions
def simple_cache(expire_seconds=300):
def decorator(func):
cache = {}
@wraps(func)
def wrapper(*args, **kwargs):
key = (func.__name__, args, frozenset(kwargs.items()))
current_time = time.time()
if key in cache:
result, timestamp = cache[key]
if current_time - timestamp < expire_seconds:
return result
result = func(*args, **kwargs)
cache[key] = (result, current_time)
return result
return wrapper
return decorator
@simple_cache(expire_seconds=300)
def duck_sql(sql_code):
con = duckdb.connect()
con.execute("PRAGMA threads=2")
con.execute("PRAGMA enable_object_cache")
return con.execute(sql_code).df()
@simple_cache(expire_seconds=300)
def get_data(lat, lon, date_str):
data_dir = r"C:/Users/aammann/OneDrive - Great American Insurance Group/Documents/Python Scripts/hail_data"
parquet_files = glob.glob(f"{data_dir}/hail_*.parquet")
print("Parquet files found:", parquet_files)
if not parquet_files:
raise ValueError("No parquet files found in the specified directory")
file_paths = ", ".join([f"'{file}'" for file in parquet_files])
lat_min, lat_max = lat-1, lat+1
lon_min, lon_max = lon-1, lon+1
code = f"""
SELECT
"#ZTIME" as "Date_utc",
LON,
LAT,
MAXSIZE
FROM read_parquet([{file_paths}], hive_partitioning=1)
WHERE
LAT BETWEEN {lat_min} AND {lat_max}
AND LON BETWEEN {lon_min} AND {lon_max}
AND "#ZTIME" <= '{date_str}'
"""
return duck_sql(code)
def distance(x):
left_coords = (x[0], x[1]) # LAT, LON
right_coords = (x[2], x[3]) # Lat_address, Lon_address
return vincenty(left_coords, right_coords, miles=True)
def geocode(address):
try:
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[0, 0]['results'].iloc[0]['coordinates']
return results['y'], results['x']
except:
geolocator = Nominatim(user_agent="HailDamageAnalyzer")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
if location:
return location.latitude, location.longitude
raise Exception("Geocoding failed")
except:
try:
geocode_key = os.getenv("GEOCODE_KEY")
if not geocode_key:
raise Exception("Geocode API key not found")
address_encoded = urllib.parse.quote(address)
url = f'https://api.geocod.io/v1.7/geocode?q={address_encoded}&api_key={geocode_key}'
response = requests.get(url, verify=False)
response.raise_for_status()
json_response = response.json()
return json_response['results'][0]['location']['lat'], json_response['results'][0]['location']['lng']
except Exception as e:
print(f"Geocoding error: {str(e)}")
raise Exception("Could not geocode address. Please try again with a different address.")
# Layout
app.layout = html.Div([
dcc.Store(id="filtered-data-store"),
dcc.Download(id="download-dataframe-csv"),
dbc.Button("Download Data as CSV", id="btn-download-csv", color="secondary", className="mb-3"),
dbc.Container([
dbc.Row([
dbc.Col([
html.H1("Hail Damage Analyzer", className="text-center my-4"),
html.P("Analyze historical hail data", className="text-center text-muted"),
html.Hr()
], width=12)
]),
dbc.Row([
dbc.Col([
html.Div([
html.H5("Search Parameters", className="mb-3"),
dbc.Form([
dbc.Label("Address"),
dbc.Input(id="address-input", type="text", placeholder="Enter address", value="Dallas, TX", className="mb-3"),
dbc.Label("Maximum Date"),
dcc.DatePickerSingle(
id='date-picker',
min_date_allowed=datetime(2010, 1, 1),
max_date_allowed=datetime(2025, 7, 5),
date=datetime(2025, 7, 5),
className="mb-3 w-100"
),
dbc.Label("Show Data Within"),
dcc.Dropdown(
id='distance-dropdown',
options=[
{'label': 'All Distances', 'value': 'all'},
{'label': 'Within 1 Mile', 'value': '1'},
{'label': 'Within 3 Miles', 'value': '3'},
{'label': 'Within 5 Miles', 'value': '5'},
{'label': 'Within 10 Miles', 'value': '10'}
],
value='all',
className="mb-4"
),
dbc.Button("Search", id="search-button", color="primary", className="w-100 mb-3")
]),
html.Div(id="summary-cards", className="mt-4")
], className="p-3 bg-light rounded-3")
], md=4),
dbc.Col([
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardHeader("Hail Data Overview"),
dbc.CardBody([
dcc.Loading(
id="loading-hail-data",
type="circle",
children=[
html.Div(id="hail-data-table"),
html.Div(id="map-container", className="mt-4")
]
)
])
])
])
]),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardHeader("Hail Size Over Time"),
dbc.CardBody([
dcc.Loading(
id="loading-hail-chart",
type="circle",
children=[
dcc.Graph(id="hail-size-chart")
]
)
])
], className="mt-4")
])
])
], md=8)
]),
html.Div(id="intermediate-data", style={"display": "none"}),
dbc.Row([
dbc.Col([
html.Hr(),
html.P("© 2025 Hail Damage Analyzer", className="text-center text-muted small")
])
], className="mt-4")
], fluid=True)
])
# Main callback
@app.callback(
[Output("intermediate-data", "children"),
Output("summary-cards", "children"),
Output("hail-data-table", "children"),
Output("map-container", "children"),
Output("hail-size-chart", "figure"),
Output("filtered-data-store", "data")],
[Input("search-button", "n_clicks"),
Input("address-input", "n_submit")],
[State("address-input", "value"),
State("date-picker", "date"),
State("distance-dropdown", "value")]
)
def update_all(n_clicks, n_submit, address, date_str, distance_filter):
print("Update all callback triggered") # Debug
ctx = dash.callback_context
if not ctx.triggered:
raise PreventUpdate
try:
lat, lon = geocode(address)
date_obj = datetime.strptime(date_str.split('T')[0], '%Y-%m-%d')
date_formatted = date_obj.strftime('%Y%m%d')
df = get_data(lat, lon, date_formatted)
if df.empty:
error_alert = dbc.Alert("No hail data found for this location and date range.", color="warning")
return dash.no_update, error_alert, "", "", {}, []
df["Lat_address"] = lat
df["Lon_address"] = lon
df['Miles to Hail'] = [
distance(i) for i in df[['LAT', 'LON', 'Lat_address', 'Lon_address']].values
]
df['MAXSIZE'] = df['MAXSIZE'].round(2)
if distance_filter != 'all':
max_distance = float(distance_filter)
df = df[df['Miles to Hail'] <= max_distance]
max_size = df['MAXSIZE'].max()
last_date = df['Date_utc'].max()
total_events = len(df)
summary_cards = dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H6("Max Hail Size (in)", className="card-title"),
html.H3(f"{max_size:.1f}", className="text-center")
])
], className="text-center")
], md=4, className="mb-3"),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H6("Last Hail Event", className="card-title"),
html.H3(last_date, className="text-center")
])
], className="text-center")
], md=4, className="mb-3"),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H6("Total Events", className="card-title"),
html.H3(f"{total_events}", className="text-center")
])
], className="text-center")
], md=4, className="mb-3")
])
df_display = df[['Date_utc', 'MAXSIZE', 'Miles to Hail']].copy()
df_display['Miles to Hail'] = df_display['Miles to Hail'].round(2)
df_display = df_display.rename(columns={
'Date_utc': 'Date',
'MAXSIZE': 'Hail Size (in)',
'Miles to Hail': 'Distance (miles)'
})
data_table = dash_table.DataTable(
id='hail-data-table',
columns=[{"name": i, "id": i} for i in df_display.columns],
data=df_display.to_dict('records'),
page_size=10,
style_table={'overflowX': 'auto'},
style_cell={
'textAlign': 'left',
'padding': '8px',
'minWidth': '50px', 'width': '100px', 'maxWidth': '180px',
'whiteSpace': 'normal'
},
style_header={
'backgroundColor': 'rgb(230, 230, 230)',
'fontWeight': 'bold'
},
style_data_conditional=[
{
'if': {
'filter_query': '{Hail Size (in)} >= 2',
'column_id': 'Hail Size (in)'
},
'backgroundColor': '#ffcccc',
'fontWeight': 'bold'
}
]
)
map_fig = go.Figure()
for _, row in df.iterrows():
size = row['MAXSIZE']
map_fig.add_trace(
go.Scattermapbox(
lon=[row['LON']],
lat=[row['LAT']],
mode='markers',
marker=go.scattermapbox.Marker(
size=size * 3,
color='red',
opacity=0.7
),
text=f"Size: {size} in Date: {row['Date_utc']}",
hoverinfo='text',
showlegend=False
)
)
if not df.empty:
center_lat = df['Lat_address'].iloc[0]
center_lon = df['Lon_address'].iloc[0]
map_fig.add_trace(
go.Scattermapbox(
lon=[center_lon],
lat=[center_lat],
mode='markers',
marker=go.scattermapbox.Marker(
size=14,
color='blue',
symbol='star'
),
text=f"Your Location: {address}",
hoverinfo='text',
showlegend=False
)
)
map_fig.update_layout(
mapbox_style="open-street-map",
mapbox=dict(
center=dict(lat=center_lat, lon=center_lon),
zoom=10
),
margin={"r":0, "t":0, "l":0, "b":0},
height=400
)
df_chart = df.copy()
df_chart['Date'] = pd.to_datetime(df_chart['Date_utc'])
df_chart = df_chart.sort_values('Date')
chart_fig = px.scatter(
df_chart,
x='Date',
y='MAXSIZE',
color='Miles to Hail',
size='MAXSIZE',
hover_data=['Miles to Hail'],
title='Hail Size Over Time',
labels={
'MAXSIZE': 'Hail Size (in)',
'Miles to Hail': 'Distance (miles)'
}
)
chart_fig.update_traces(
marker=dict(
line=dict(width=1, color='DarkSlateGrey'),
opacity=0.7
),
selector=dict(mode='markers')
)
chart_fig.update_layout(
xaxis_title='Date',
yaxis_title='Hail Size (in)',
plot_bgcolor='rgba(0,0,0,0.02)',
paper_bgcolor='white',
hovermode='closest'
)
intermediate_data = df.to_json(date_format='iso', orient='split')
map_figure = dcc.Graph(figure=map_fig)
chart_figure = chart_fig
store_data = df.to_dict('records')
print("Store data populated:", store_data[:2])
return (
intermediate_data,
summary_cards,
data_table,
map_figure,
chart_figure,
store_data
)
except Exception as e:
error_alert = dbc.Alert(f"Error: {str(e)}", color="danger")
return dash.no_update, error_alert, "", "", {}, []
from dash import callback_context
@callback(
Output("download-dataframe-csv", "data"),
[Input("btn-download-csv", "n_clicks")],
[State("filtered-data-store", "data")],
prevent_initial_call=True
)
def download_csv(n_clicks, data):
if not n_clicks or not data:
return dash.no_update
df = pd.DataFrame(data)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"hail_data_export_{timestamp}.csv"
csv_string = df.to_csv(index=False, encoding='utf-8')
return dict(content=csv_string, filename=filename)
if __name__ == '__main__':
print("🚀 Dash app is running! Open this link in your browser:")
print("👉 http://localhost:7860/")
app.run(debug=True, host='0.0.0.0', port=7860) |