Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,177 Bytes
7c34c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from typing import Dict, List, Any, Union, Optional
from collections import Counter
from functools import cache
import contextlib
import tempfile
import shutil
import random
import subprocess
import json
import re
import io
import os
import torch
import requests
import transformers
import numpy as np
from datasets import load_dataset, Dataset
from PIL import Image
from multi_token.constants import IGNORE_INDEX
def encode_chat(
item: Dict,
tokenizer: transformers.PreTrainedTokenizer,
modalities: List["Modality"],
) -> Dict:
messages = list(item["messages"])
chat_as_string = tokenizer.apply_chat_template(messages, tokenize=False)
token_to_modality = {m.token: m for m in modalities}
modality_token_counts = Counter()
instruct_pattern = r"(\[INST\][\s\S]*?\[\/INST\])"
pattern = "(" + "|".join(re.escape(m.token) for m in modalities) + ")"
chat_part = re.split(instruct_pattern, chat_as_string)
input_ids = []
labels = []
for part in chat_part:
if "[INST]" in part:
is_instruction = True
else:
is_instruction = False
for subpart in re.split(pattern, part):
if not subpart:
continue
if subpart in token_to_modality:
assert (
is_instruction
), "There should be no modality tokens outside of instructions"
m = token_to_modality[subpart]
modality_token_counts[m.name] += 1
input_ids.extend([m.token_idx] * m.token_width)
labels.extend([IGNORE_INDEX] * m.token_width)
elif is_instruction:
part_ids = tokenizer(subpart, add_special_tokens=False).input_ids
input_ids.extend(part_ids)
labels.extend([IGNORE_INDEX] * len(part_ids))
else:
part_ids = tokenizer(subpart, add_special_tokens=False).input_ids
input_ids.extend(part_ids)
labels.extend(part_ids)
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = torch.tensor(labels, dtype=torch.long)
data_dict = dict(
input_ids=input_ids,
labels=labels,
)
for m in modalities:
data_dict[m.name] = m.preprocess_rows([item])[0]
return data_dict
def encode_chat_multitask(
item: Dict,
tokenizer: transformers.PreTrainedTokenizer,
modalities: List["Modality"],
) -> Dict:
messages = list(item["messages"])
chat_as_string = tokenizer.apply_chat_template(messages, tokenize=False)
token_to_modality = {m.token: m for m in modalities}
modality_token_counts = Counter()
instruct_pattern = r"(\[INST\][\s\S]*?\[\/INST\])"
pattern = "(" + "|".join(re.escape(m.token) for m in modalities) + ")"
chat_part = re.split(instruct_pattern, chat_as_string)
input_ids = []
labels = []
labels.append([])
for part in chat_part:
if "[INST]" in part:
is_instruction = True
else:
is_instruction = False
for subpart in re.split(pattern, part):
if not subpart:
continue
if subpart in token_to_modality:
assert (
is_instruction
), "There should be no modality tokens outside of instructions"
m = token_to_modality[subpart]
modality_token_counts[m.name] += 1
input_ids.extend([m.token_idx] * m.token_width)
labels[0].extend([IGNORE_INDEX] * m.token_width)
elif is_instruction:
part_ids = tokenizer(subpart, add_special_tokens=False).input_ids
input_ids.extend(part_ids)
labels[0].extend([IGNORE_INDEX] * len(part_ids))
else:
part_ids = tokenizer(subpart, add_special_tokens=False).input_ids
input_ids.extend(part_ids)
labels[0].extend(part_ids)
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels[0] = torch.tensor(labels[0], dtype=torch.long)
task_list = []
for m in modalities:
task_list += m.tasks["task_heads"].keys()
# labels[task_specs["task_id"]] = load_tensor(item[task_name][0])
for task_name in task_list:
if task_name != "lmm_projector":
labels.append(load_tensor(item[task_name][0]))
# labels = torch.tensor(labels, dtype=torch.long)
data_dict = dict(
input_ids=input_ids,
labels=labels,
)
for m in modalities:
data_dict[m.name] = m.preprocess_rows([item])[0]
return data_dict
def load_tensor(path: str) -> np.ndarray:
return torch.tensor(np.load(path))
def load_image(value: Any) -> Image.Image:
img = None
if isinstance(value, str):
if value.startswith("http://") or value.startswith("https://"):
response = requests.get(value)
img = Image.open(io.BytesIO(response.content))
elif os.path.exists(value):
img = Image.open(value)
elif isinstance(value, Image.Image):
img = value
if img is None:
raise ValueError(f"Could not load image from {value}")
img = img.convert("RGB")
return img
@contextlib.contextmanager
def with_local_files(fn_or_urls: List[Any]):
local_fns = []
fps = []
for fn_or_url in fn_or_urls:
if isinstance(fn_or_url, Image.Image):
fp = tempfile.NamedTemporaryFile(suffix=".png", mode="wb")
fn_or_url.convert("RGB").save(fp)
fps.append(fp)
local_fns.append(fp.name)
elif fn_or_url.startswith("http://") or fn_or_url.startswith("https://"):
suffix = os.path.splitext(fn_or_url)[-1]
with requests.get(fn_or_url, stream=True) as r:
fp = tempfile.NamedTemporaryFile(suffix=suffix, mode="wb")
shutil.copyfileobj(r.raw, fp)
fps.append(fp)
local_fns.append(fp.name)
else:
local_fns.append(fn_or_url)
try:
yield local_fns
finally:
for fp in fps:
fp.close()
@cache
def _get_dataset(dataset_args: str) -> Dataset:
return load_dataset(**json.loads(dataset_args))
def get_dataset_cached(dataset_args: Dict) -> Dataset:
return _get_dataset(json.dumps(dataset_args))
def load_audio_signal(input_: Union[Dict, str]) -> Dict:
from audiotools import AudioSignal
if isinstance(input_, dict) and "array" in input_:
array = input_["array"]
elif isinstance(input_, dict) and "dataset_args" in input_:
item = get_dataset_cached(input_["dataset_args"])[input_["idx"]]
array = item["audio"]["array"]
elif isinstance(input_, dict) and "path" in input_:
with with_local_files([input_["path"]]) as local_fns:
array = AudioSignal(local_fns[0])
elif isinstance(input_, str):
with with_local_files([input_]) as local_fns:
array = AudioSignal(local_fns[0])
else:
raise ValueError(f"Could not load audio from {input_}")
return {"array": list(array)}
def load_audio(input_: Union[Dict, str], target_sampling_rate: int = None) -> Dict:
import soundfile as sf
import librosa
if isinstance(input_, dict) and "array" in input_ and "sampling_rate" in input_:
array = input_["array"]
sampling_rate = input_["sampling_rate"]
elif isinstance(input_, dict) and "dataset_args" in input_:
item = get_dataset_cached(input_["dataset_args"])[input_["idx"]]
array = item["audio"]["array"]
sampling_rate = item["audio"]["sampling_rate"]
elif isinstance(input_, dict) and "path" in input_:
with with_local_files([input_["path"]]) as local_fns:
array, sampling_rate = sf.read(local_fns[0])
elif isinstance(input_, str):
with with_local_files([input_]) as local_fns:
array, sampling_rate = sf.read(local_fns[0])
else:
raise ValueError(f"Could not load audio from {input_}")
if array.ndim == 2:
array = array.mean(axis=1)
if target_sampling_rate is not None and sampling_rate != target_sampling_rate:
array = librosa.resample(
array, orig_sr=sampling_rate, target_sr=target_sampling_rate
)
sampling_rate = target_sampling_rate
return {"array": list(array), "sampling_rate": sampling_rate}
def _download_yt_video(url: str) -> str:
from pytube import YouTube
youtube = YouTube(url)
video = youtube.streams.first()
fn = "".join(random.choices("abcdefghijklmnopqrstuvwxyz", k=10))
file_path = video.download(output_path=tempfile.gettempdir(), filename=fn)
return file_path
def _read_video_pyav(container, indices):
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def _sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
def load_video(
input_: str,
frames: int = 8,
frame_sample_rate: int = 1,
start_time: Optional[int] = None,
end_time: Optional[int] = None,
) -> np.ndarray:
import av
delete_file = False
if isinstance(input_, dict) and "youtube.com" and input_.get("url", ""):
file_path = _download_yt_video(input_["url"])
delete_file = True
# start_time = input_.get("start_time", None)
# end_time = input_.get("end_time", None)
elif isinstance(input_, str) and "youtube.com" in input_:
file_path = _download_yt_video(input_)
delete_file = True
elif isinstance(input_, str):
file_path = input_
else:
raise ValueError(f"Could not load video from {input_}")
if start_time is not None or end_time is not None:
start_time = start_time if start_time is not None else 0
end_time = end_time if end_time is not None else "end"
trim_file_path = f"{file_path.rsplit('.', 1)[0]}_trim.mp4"
subprocess.run(
[
"ffmpeg",
"-i",
file_path,
"-ss",
str(start_time),
"-to",
str(end_time),
"-c",
"copy",
trim_file_path,
]
)
file_path = trim_file_path
container = av.open(file_path)
indices = _sample_frame_indices(
clip_len=frames,
frame_sample_rate=frame_sample_rate,
seg_len=container.streams.video[0].frames,
)
video = _read_video_pyav(container, indices)
if delete_file:
os.remove(file_path)
return video
|