File size: 3,936 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from typing import Dict, List, Optional

import torch
import torch.nn as nn
from transformers import AutoFeatureExtractor, WhisperModel

from multi_token.data_tools import load_audio
from multi_token.modalities.base_modality import Modality
from multi_token.modalities.projectors import (
    build_mlp_vector_projector,
)


OUTPUT_EMB_SIZE = 768


class WhisperAudioModule(nn.Module):
    def __init__(self, model_name_or_path: str):
        super().__init__()
        self.model_name_or_path = model_name_or_path
        self.model = None
        self.feature_extractor = None

        self.load_model()

    def load_model(self):
        self.model = WhisperModel.from_pretrained(self.model_name_or_path)
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(
            self.model_name_or_path
        )
        self.model.requires_grad_(False)

    @torch.no_grad()
    def forward(self, audios) -> torch.Tensor:
        hidden_states = []
        for i in range(audios.shape[0]):
            decoder_input_ids = (
                torch.tensor([[1]]) * self.model.config.decoder_start_token_id
            )
            last_hidden_state = self.model(
                audios[i].to(device=self.device, dtype=self.dtype),
                decoder_input_ids=decoder_input_ids.to(device=self.device),
            ).last_hidden_state
            hidden_states.append(last_hidden_state)
        last_hidden_state = torch.stack(hidden_states)
        return last_hidden_state.view(-1, 1, OUTPUT_EMB_SIZE)

    @property
    def dtype(self):
        return self.model.dtype

    @property
    def device(self):
        return self.model.device


class WhisperAudioModality(Modality):
    def __init__(
        self,
        model_name_or_path: str = "openai/whisper-small",
        num_projector_layers: int = 2,
        num_tokens_output: int = 10,
    ):
        self.model_name_or_path = model_name_or_path
        self.module = WhisperAudioModule(model_name_or_path=self.model_name_or_path)
        self.num_projector_layers = num_projector_layers
        self.num_tokens_output = num_tokens_output

    def build_projector(self, lm_hidden_size: int) -> nn.Module:
        return build_mlp_vector_projector(
            input_hidden_size=OUTPUT_EMB_SIZE,
            lm_hidden_size=lm_hidden_size,
            num_layers=self.num_projector_layers,
            num_tokens=self.num_tokens_output,
        )

    @property
    def name(self) -> str:
        return "audio_whisper"

    @property
    def token(self) -> str:
        return "<speech>"

    @property
    def data_key(self) -> str:
        return "speech_audios"

    @property
    def token_width(self) -> int:
        return self.num_tokens_output

    def to(self, dtype: torch.dtype, device: torch.device) -> "WhisperAudioModality":
        self.module.to(dtype=dtype, device=device)
        return self

    def preprocess_rows(self, rows: List[Dict]) -> List[Optional[torch.Tensor]]:
        row_values = []
        for row in rows:
            audios = []
            for audio_dict in row[self.data_key]:
                audio_dict = load_audio(
                    audio_dict,
                    target_sampling_rate=self.module.feature_extractor.sampling_rate,
                )
                audio_processed = self.module.feature_extractor(
                    audio_dict["array"],
                    return_tensors="pt",
                    sampling_rate=audio_dict["sampling_rate"],
                ).input_features
                audios.append(audio_processed)
            row_values.append(torch.stack(audios) if len(audios) > 0 else None)
        return row_values

    @torch.no_grad()
    def forward(self, encoded_values: List[torch.Tensor]) -> List[torch.Tensor]:
        audio_features = []
        for audio_batch in encoded_values:
            audio_features.append(self.module.forward(audio_batch))
        return audio_features