File size: 18,337 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import torch.nn as nn
import torch
from typing import Dict
import numpy as np

import torch.nn.functional as F

def build_patch_mlp_projector(
    input_hidden_size: int, lm_hidden_size: int, num_layers: int
) -> nn.Module:
    modules = [nn.Linear(input_hidden_size, lm_hidden_size)]
    for _ in range(1, num_layers):
        modules.append(nn.GELU())
        modules.append(nn.Linear(lm_hidden_size, lm_hidden_size))
    return nn.Sequential(*modules)


class _MLPVectorProjector(nn.Module):
    def __init__(
        self, input_hidden_size: int, lm_hidden_size: int, num_layers: int, width: int
    ):
        super(_MLPVectorProjector, self).__init__()
        self.mlps = nn.ModuleList()
        for _ in range(width):
            mlp = [nn.Linear(input_hidden_size, lm_hidden_size)]
            for _ in range(1, num_layers):
                mlp.append(nn.GELU())
                mlp.append(nn.Linear(lm_hidden_size, lm_hidden_size))
            self.mlps.append(nn.Sequential(*mlp))

    def forward(self, x):
        output = torch.cat([mlp(x) for mlp in self.mlps], dim=-2)
        return output

def build_mlp_vector_projector(
    input_hidden_size: int, lm_hidden_size: int, num_layers: int, num_tokens: int
):
    return _MLPVectorProjector(
        input_hidden_size, lm_hidden_size, num_layers, num_tokens
    )

class MLPBackbone(nn.Module):
    def __init__(self, input_size: int, output_size: int, num_layers: int, hidden_dim: int):
        super(MLPBackbone, self).__init__()
        self.output_size = output_size
        mlp_layers = self._create_mlp_layers(input_size, output_size, num_layers, hidden_dim)
        self.layers = nn.Sequential(*mlp_layers)       

    def _create_conv_layers(self, input_channels, num_conv_layers, hidden_dim):
        layers = []
        for _ in range(num_conv_layers):
            layers += [
                nn.Conv1d(input_channels, hidden_dim, kernel_size=3, padding=1),
                nn.GELU(),
                nn.MaxPool1d(kernel_size=2, stride=2)
            ]
            input_channels = hidden_dim
        return layers

    def _create_mlp_layers(self, input_size, output_size, num_layers, hidden_dim):
        if num_layers >=2:
            layers = [nn.Linear(input_size, hidden_dim)]
            layers.append(nn.GELU())
            if num_layers > 2:
                for _ in range(1, num_layers - 2):
                    layers += [
                        nn.Linear(hidden_dim, hidden_dim),
                        nn.GELU()
                    ]
            layers.append(nn.Linear(hidden_dim, output_size))
        else:
            layers = [nn.Linear(input_size, output_size)]
        return layers

    def forward(self, x):
        return self.layers(x)

class MLPTaskHead(nn.Module):
    def __init__(self, backbone: nn.Module, input_size: int, output_size: int, num_layers: int, hidden_dim: int, width: int = 1):
        super(MLPTaskHead, self).__init__()
        self.backbone = backbone
        self.width = width
        if width > 1:
            self.layers = nn.ModuleList()
            for i in range(width):
                mlp_layers = [nn.GELU()]
                mlp_layers += self._create_mlp_layers(input_size, output_size, num_layers, hidden_dim)
                self.layers.append(nn.Sequential(*mlp_layers))
        else:
            mlp_layers = [nn.GELU()]
            mlp_layers += self._create_mlp_layers(input_size, output_size, num_layers, hidden_dim)
            self.layers = nn.Sequential(*mlp_layers)

    def _create_mlp_layers(self, input_size, output_size, num_layers, hidden_dim):
        if num_layers >=2:
            layers = [nn.Linear(input_size, hidden_dim)]
            layers.append(nn.GELU())
            if num_layers > 2:
                for _ in range(1, num_layers - 2):
                    layers += [
                        nn.Linear(hidden_dim, hidden_dim),
                        nn.GELU()
                    ]
            layers.append(nn.Linear(hidden_dim, output_size))
        else:
            layers = [nn.Linear(input_size, output_size)]
        return layers

    def _create_conv_layers(self, input_channels, num_conv_layers, hidden_dim):
        layers = []
        for _ in range(num_conv_layers):
            layers += [
                nn.Conv2d(in_channels = input_channels, out_channels = hidden_dim, kernel_size=(3,3), stride=1, padding=1),
                nn.GELU(),
                nn.MaxPool1d(kernel_size=2, stride=2)
            ]
            input_channels = hidden_dim
        return layers

    def forward(self, x):
        output = self.backbone.forward(x)
        if self.width > 1:
            return torch.cat([layer(output) for layer in self.layers], dim=-2)
        else:
            return self.layers(output)

class MLPTaskModule(nn.Module):
    def __init__(self, input_size: int, output_size: int, num_layers: int, hidden_dim: int, width: int = 1):
        super(MLPTaskModule, self).__init__()
        self.width = width
        if width > 1:
            self.layers = nn.ModuleList()
            for i in range(width):
                mlp_layers = [nn.GELU()]
                mlp_layers += self._create_mlp_layers(input_size, output_size, num_layers, hidden_dim)
                self.layers.append(nn.Sequential(*mlp_layers))
        else:
            mlp_layers = [nn.GELU()]
            mlp_layers += self._create_mlp_layers(input_size, output_size, num_layers, hidden_dim)
            self.layers = nn.Sequential(*mlp_layers)

    def _create_mlp_layers(self, input_size, output_size, num_layers, hidden_dim):
        if num_layers >=2:
            layers = [nn.Linear(input_size, hidden_dim)]
            layers.append(nn.GELU())
            if num_layers > 2:
                for _ in range(1, num_layers - 2):
                    layers += [
                        nn.Linear(hidden_dim, hidden_dim),
                        nn.GELU()
                    ]
            layers.append(nn.Linear(hidden_dim, output_size))
        else:
            layers = [nn.Linear(input_size, output_size)]
        return layers

    def _create_conv_layers(self, input_channels, num_conv_layers, hidden_dim):
        layers = []
        for _ in range(num_conv_layers):
            layers += [
                nn.Conv2d(in_channels = input_channels, out_channels = hidden_dim, kernel_size=(3,3), stride=1, padding=1),
                nn.GELU(),
                nn.MaxPool1d(kernel_size=2, stride=2)
            ]
            input_channels = hidden_dim
        return layers

    def forward(self, x):
        if self.width > 1:
            return torch.cat([layer(x) for layer in self.layers], dim=-2)
        else:
            return self.layers(x)


class MultiTaskModel(nn.Module):
    def __init__(self, input_hidden_size: int, input_channels: int, time_average: bool, time_dimension: int, use_aggregator: bool, tasks: Dict):
        super(MultiTaskModel, self).__init__()
        self.tasks = tasks
        self.time_average = time_average
        self.time_dimension = time_dimension
        self.use_aggregator = use_aggregator
        if self.use_aggregator:
            if (time_average):
                self.aggregator = nn.Parameter(torch.randn((input_channels, 1), dtype = torch.float))
            else:
                self.aggregator = nn.Parameter(torch.randn((input_channels, 1, 1), dtype = torch.float))

        self.backbone = MLPBackbone(input_hidden_size, self.tasks["backbone"]["output_size"], self.tasks["backbone"]["num_layers"], self.tasks["backbone"]["hidden_size"])
        for task_name, task_head in self.tasks["task_heads"].items():
            setattr(self, task_name, MLPTaskModule(self.tasks["backbone"]["output_size"], task_head["output_size"], task_head["num_layers"], task_head["hidden_size"], task_head["width"]))
            if task_name in self.tasks["task_projectors"].keys():
                task_projector = tasks["task_projectors"][task_name]
                setattr(self, task_name + "_projector", MLPTaskModule(task_head["output_size"], task_projector["output_size"], task_projector["num_layers"], task_projector["hidden_size"], task_projector["width"]))

    def forward(self, x):
        task_head_outputs = {}
        task_projector_outputs = []

        if self.time_average:
            x = x.mean(self.time_dimension)
        if self.use_aggregator:
            aggregator_weights = F.softmax(self.aggregator, dim=0)
            aggregator_output = (x * aggregator_weights).sum(dim=0)
            aggregator_output = aggregator_output.unsqueeze(0)
        else:
            aggregator_output = x

        backbone_output = self.backbone(aggregator_output)

        for task_name in self.tasks["task_heads"]:
            if task_name != "lmm_projector":
                task_head_output = getattr(self, task_name)(backbone_output)
                min_val = torch.min(task_head_output)
                max_val = torch.max(task_head_output)

                normalized_task_head_output = (task_head_output - min_val) / (max_val - min_val)
                task_head_outputs[task_name] = normalized_task_head_output
                if task_name in self.tasks["task_projectors"].keys():
                    task_projector_outputs.append(getattr(self, task_name + "_projector")(task_head_outputs[task_name]))
            else:
                task_projector_outputs.append(getattr(self, task_name)(backbone_output))

        task_projector_outputs_unsqueezed = [task_projector_output.unsqueeze(0) for task_projector_output in task_projector_outputs]
        if len(task_projector_outputs_unsqueezed) > 0:
            task_head_outputs["projectors"] = torch.cat(task_projector_outputs_unsqueezed, dim=-2)

        return task_head_outputs


def build_mt_vector_projector(
        input_hidden_size: int, lm_hidden_size: int, tasks: Dict
):
    projector = nn.ModuleDict()
    projector["backbone"] = MLPBackbone(input_hidden_size, tasks["backbone"]["output_size"], tasks["backbone"]["num_layers"], tasks["backbone"]["hidden_size"])
    for task_name, task_head in tasks["task_heads"].items():
        projector[task_name] = MLPTaskHead(projector["backbone"], task_head["hidden_size"], task_head["output_size"], task_head["num_layers"], task_head["hidden_size"], task_head["width"])

    return projector

class Attention(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super(Attention, self).__init__()
        self.linear_in = nn.Linear(input_dim, hidden_dim)
        self.linear_out = nn.Linear(hidden_dim, 1)

    def forward(self, x):
        # Input shape: (batch_size, seq_len, input_dim)
        energy = torch.tanh(self.linear_in(x))
        attention_scores = torch.softmax(self.linear_out(energy), dim=1)
        context_vector = torch.sum(attention_scores * x, dim=1)
        return context_vector

class _CNNAttentionTokenizer(nn.Module):
    def __init__(self, input_channels, output_size, width, hidden_dim, num_conv_layers):
        super(_CNNAttentionTokenizer, self).__init__()
        self.width = width
        self.cnns = nn.ModuleList()
        self.attentions = nn.ModuleList()
        for _ in range(width):
            cnn = self._create_conv_layers(input_channels, num_conv_layers)
            self.cnns.append(cnn)
            attention = [Attention(hidden_dim, 125)]
            linear_input_size = hidden_dim
            attention.append(nn.Linear(linear_input_size, output_size))
            self.attentions.append(nn.Sequential(*attention))


    def _create_conv_layers(self, input_channels, num_conv_layers):
        layers = []
        in_channels = input_channels
        for _ in range(num_conv_layers):
            layers += [
                nn.Conv1d(in_channels, 64, kernel_size=3, padding=1),
                nn.ReLU(),
                nn.MaxPool1d(kernel_size=2, stride=2)
            ]
            in_channels = 64
        return nn.Sequential(*layers)

    def forward(self, x):
        outputs = []
        for token in range(self.width):
            # Input shape: (batch_size, input_channels, sequence_length)
            token_output = self.cnns[token](x)  # Apply convolutional layers
            token_output = token_output.permute(0, 2, 1)  # Reshape for attention mechanism (batch_size, sequence_length, input_dim
            token_output = self.attentions[token](token_output)  # Apply attention mechanism
            outputs.append(token_output)
        output = torch.cat(outputs, dim=-2)
        output = torch.stack([output])
        return output

def build_attentive_cnn_projector(
    input_channels: int, lm_hidden_size: int, num_tokens: int, hidden_dim: int, num_layers: int
    ):
    return _CNNAttentionTokenizer(input_channels, lm_hidden_size, num_tokens, hidden_dim, num_layers)

class _CNNMLPProjector(nn.Module):
    def __init__(self, input_channels, input_size, output_size = 4096, width = 5, hidden_dim = 64, num_conv_layers = 1, num_mlp_layers = 2):
        super(_CNNMLPProjector, self).__init__()
        self.width = width
        self.cnnmlps = nn.ModuleList()
        for _ in range(self.width):
            cnnmlp = self._create_conv_layers(input_channels, num_conv_layers, hidden_dim)
            cnnmlp.append(nn.Flatten())
            cnn_output_size = hidden_dim*((input_size + 2*1 - 3*num_conv_layers) // (2**num_conv_layers) + 1)
            cnnmlp.append(nn.Linear(cnn_output_size, output_size))
            cnnmlp.append(nn.GELU())
            cnnmlp += self._create_mlp_layers(output_size, output_size, num_mlp_layers, output_size)
            self.cnnmlps.append(nn.Sequential(*cnnmlp))

    def _create_conv_layers(self, input_channels, num_conv_layers, hidden_dim):
        layers = []
        for _ in range(num_conv_layers):
            layers += [
                nn.Conv1d(input_channels, hidden_dim, kernel_size=3, padding=1),
                nn.GELU(),
                nn.MaxPool1d(kernel_size=2, stride=2)
            ]
            input_channels = hidden_dim
        return layers

    def _create_mlp_layers(self, input_size, output_size, num_layers, hidden_dim):
        if num_layers >=2:
            layers = [nn.Linear(input_size, hidden_dim)]
            layers.append(nn.GELU())
            if num_layers > 2:
                for _ in range(1, num_layers - 2):
                    layers += [
                        nn.Linear(hidden_dim, hidden_dim),
                        nn.GELU()
                    ]
            layers.append(nn.Linear(hidden_dim, output_size))
        else:
            layers = [nn.Linear(input_size, output_size)]
        return layers

    def forward(self, x):
        return torch.stack([torch.cat([cnnmlp(x) for cnnmlp in self.cnnmlps], dim=-2)])

def build_cnn_mlp_projector(
    input_channels: int, input_size: int, lm_hidden_size: int, num_tokens: int, hidden_dim: int, num_conv_layers: int, num_mlp_layers: int
    ):
    return _CNNMLPProjector(input_channels, input_size, lm_hidden_size, num_tokens, hidden_dim, num_conv_layers, num_mlp_layers)

class _MultiLayeredCNNMLPProjector(nn.Module):
    def __init__(self, input_channels, input_size, num_feature_layers, output_size = 4096, width = 5, hidden_dim = 64, num_conv_layers = 1, num_mlp_layers = 2):
        super(_MultiLayeredCNNMLPProjector, self).__init__()
        self.width = width
        self.num_feature_layers = num_feature_layers
        self.cnnmlps = nn.ModuleList()
        for _ in range(self.width*self.num_feature_layers):
            cnnmlp = self._create_conv_layers(input_channels, num_conv_layers, hidden_dim)
            cnnmlp += [nn.GELU()]
            cnnmlp += self._create_mlp_layers(input_size, output_size, num_mlp_layers, output_size)
            self.cnnmlps.append(nn.Sequential(*cnnmlp))

    def _create_conv_layers(self, input_channels, num_conv_layers, hidden_size):
        layers = []

        if input_channels >= hidden_size:
            hidden_dim = int(input_channels/2)
        else:
            hidden_dim = hidden_size

        layers += [nn.Conv1d(in_channels=input_channels, out_channels=hidden_dim, kernel_size=3, stride=1, padding=1), nn.GELU()]
        if num_conv_layers > 2:
            for _ in range(num_conv_layers - 2):
                if hidden_dim/2 >= hidden_size:
                    output_dim = int(hidden_dim/2)
                else:
                    output_dim = hidden_size
                layers += [
                    nn.Conv1d(in_channels=hidden_dim, out_channels=output_dim, kernel_size=3, stride=1, padding=1),
                    nn.GELU(),
                ]
                hidden_dim = output_dim
        layers += [nn.Conv1d(in_channels=hidden_dim, out_channels=1, kernel_size=3, stride=1, padding=1)]
        return layers

    def _create_mlp_layers(self, input_size, output_size, num_layers, hidden_dim):
        if num_layers >=2:
            layers = [nn.Linear(input_size, hidden_dim)]
            layers.append(nn.GELU())
            if num_layers > 2:
                for _ in range(1, num_layers - 2):
                    layers += [
                        nn.Linear(hidden_dim, hidden_dim),
                        nn.GELU()
                    ]
            layers.append(nn.Linear(hidden_dim, output_size))
        else:
            layers = [nn.Linear(input_size, output_size)]
        return layers

    def forward(self, x):
        print("X SHAPE ", x.shape)
        inp_feature_layers = []
        for feature_id in range(self.num_feature_layers):
            in_feat_layer = x[feature_id].unsqueeze(0).permute(0,2,1)
            inp_feature_layers.append(in_feat_layer)

        outputs = []
        for layer_count in range(self.width*self.num_feature_layers):
            feature_id = int(layer_count/self.width)
            outputs+=[self.cnnmlps[layer_count](inp_feature_layers[feature_id])]
        
        return torch.cat(outputs, dim=-2)


def build_multi_layer_cnn_mlp_projector(
    input_channels: int, input_size: int, num_feature_layers: int, lm_hidden_size: int, num_tokens: int, hidden_dim: int, num_conv_layers: int, num_mlp_layers: int
    ):
    assert(num_tokens % num_feature_layers == 0)
    width = int(num_tokens/num_feature_layers)
    return _MultiLayeredCNNMLPProjector(input_channels, input_size, num_feature_layers, lm_hidden_size, width, hidden_dim, num_conv_layers, num_mlp_layers)