File size: 3,354 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from typing import Dict, List, Optional

import torch
import torch.nn as nn
from transformers import AutoProcessor, AutoModel

from multi_token.data_tools import load_video
from multi_token.modalities.base_modality import Modality
from multi_token.modalities.projectors import (
    build_mlp_vector_projector,
)


OUTPUT_EMB_SIZE = 512


class XCLIPVideoModule(nn.Module):
    def __init__(self, model_name_or_path: str):
        super().__init__()
        self.model_name_or_path = model_name_or_path
        self.model = None
        self.processor = None

        self.load_model()

    def load_model(self):
        self.model = AutoModel.from_pretrained(self.model_name_or_path)
        self.processor = AutoProcessor.from_pretrained(self.model_name_or_path)
        self.model.requires_grad_(False)

    @torch.no_grad()
    def forward(self, video_inputs) -> torch.Tensor:
        with torch.no_grad():
            outputs = self.model(**(video_inputs.to(device=self.device)))

        emb = outputs.video_embeds.to(device=self.device, dtype=self.dtype).view(
            -1, 1, OUTPUT_EMB_SIZE
        )
        return emb

    @property
    def dtype(self):
        return self.model.dtype

    @property
    def device(self):
        return self.model.device


class XCLIPVideoModality(Modality):
    def __init__(
        self,
        model_name_or_path: str = "microsoft/xclip-base-patch32",
        num_projector_layers: int = 2,
        num_tokens_output: int = 10,
    ):
        self.model_name_or_path = model_name_or_path
        self.module = XCLIPVideoModule(model_name_or_path=self.model_name_or_path)
        self.num_projector_layers = num_projector_layers
        self.num_tokens_output = num_tokens_output

    def build_projector(self, lm_hidden_size: int) -> nn.Module:
        return build_mlp_vector_projector(
            input_hidden_size=OUTPUT_EMB_SIZE,
            lm_hidden_size=lm_hidden_size,
            num_layers=self.num_projector_layers,
            num_tokens=self.num_tokens_output,
        )

    @property
    def name(self) -> str:
        return "video_xclip"

    @property
    def token(self) -> str:
        return "<video>"

    @property
    def data_key(self) -> str:
        return "videos"

    @property
    def token_width(self) -> int:
        return self.num_tokens_output

    def to(self, dtype: torch.dtype, device: torch.device) -> "XCLIPVideoModality":
        self.module.to(dtype=dtype, device=device)
        return self

    def preprocess_rows(self, rows: List[Dict]) -> List[Optional[Dict]]:
        row_values = []
        for row in rows:
            video_arrays = [
                load_video(
                    video_info,
                )
                for video_info in row[self.data_key]
            ]
            videos_enc = self.module.processor(
                videos=[list(video) for video in video_arrays],
                text=["IGNORE"],
                return_tensors="pt",
                padding=True,
            )
            row_values.append(videos_enc)
        return row_values

    @torch.no_grad()
    def forward(self, encoded_values: List[torch.Tensor]) -> List[torch.Tensor]:
        video_features = []
        for video_batch in encoded_values:
            video_features.append(self.module.forward(video_batch))
        return video_features