annabeth97c's picture
feat(src/sonicverse): Initial commit
7c34c28
from typing import Dict, List, Optional
import torch
import torch.nn as nn
from transformers import ClapModel, ClapProcessor
from multi_token.model_utils import MultiTaskType
from multi_token.data_tools import load_audio
from multi_token.modalities.base_modality import Modality
from multi_token.modalities.projectors import (
build_mlp_vector_projector, build_mt_vector_projector, MultiTaskModel
)
import json
OUTPUT_EMB_SIZE = 512
class CLAPAudioModule(nn.Module):
def __init__(self, model_name_or_path: str):
super().__init__()
self.model_name_or_path = model_name_or_path
self.model = None
self.processor = None
self.load_model()
def load_model(self):
self.model = ClapModel.from_pretrained(self.model_name_or_path)
self.processor = ClapProcessor.from_pretrained(self.model_name_or_path)
self.model.requires_grad_(False)
@torch.no_grad()
def forward(self, audios) -> torch.Tensor:
embs = []
for audio_features in audios:
features = self.model.get_audio_features(
input_features=audio_features["input_features"].to(torch.float32),
is_longer=audio_features["is_longer"],
)
embs.append(features)
embs = torch.stack(embs)
return embs.view(-1, 1, OUTPUT_EMB_SIZE)
@property
def dtype(self):
return self.model.dtype
@property
def device(self):
return self.model.device
class CLAPAudioModality(Modality):
def __init__(
self,
model_name_or_path: str = "laion/clap-htsat-fused",
num_projector_layers: int = 2,
num_tokens_output: int = 10,
use_multi_task: int = MultiTaskType.NO_MULTI_TASK,
tasks_config: str = None
):
self.model_name_or_path = model_name_or_path
self.module = CLAPAudioModule(model_name_or_path=self.model_name_or_path)
self.num_projector_layers = num_projector_layers
self.num_tokens_output = num_tokens_output
self.dtype = torch.float32
self.use_multi_task = use_multi_task
self.tasks = None
if self.use_multi_task != MultiTaskType.NO_MULTI_TASK:
with open(tasks_config, 'r') as f:
self.tasks = json.load(f)
print("Tasks :", self.tasks)
def build_projector(self, lm_hidden_size: int) -> nn.Module:
if self.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
return MultiTaskModel(OUTPUT_EMB_SIZE, self.tasks)
elif self.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
return build_mt_vector_projector(
# return build_mlp_vector_projector(
input_hidden_size=OUTPUT_EMB_SIZE,
lm_hidden_size=lm_hidden_size,
# num_layers=self.num_projector_layers,
# num_tokens=self.num_tokens_output,
# )
tasks = self.tasks
)
# )["llm_projector"]
else:
return build_mlp_vector_projector(
input_hidden_size=OUTPUT_EMB_SIZE,
lm_hidden_size=lm_hidden_size,
num_layers=self.num_projector_layers,
num_tokens=self.num_tokens_output,
)
@property
def name(self) -> str:
return "audio_clap"
@property
def token(self) -> str:
return "<sound>"
@property
def data_key(self) -> str:
return "sounds"
@property
def token_width(self) -> int:
return self.num_tokens_output
def to(self, dtype: torch.dtype, device: torch.device) -> "CLAPAudioModality":
self.dtype = dtype
self.module.to(device=device)
return self
def preprocess_rows(self, rows: List[Dict]) -> List[Optional[Dict]]:
row_values = []
for row in rows:
audios = []
for audio_dict in row[self.data_key]:
audio_dict = load_audio(
audio_dict,
target_sampling_rate=self.module.processor.feature_extractor.sampling_rate,
)
audio_processed = self.module.processor(
audios=audio_dict["array"],
return_tensors="pt",
sampling_rate=audio_dict["sampling_rate"],
)
audios.append(audio_processed)
row_values.append(audios)
return row_values
@torch.no_grad()
def forward(self, encoded_values: List[torch.Tensor]) -> List[torch.Tensor]:
audio_features = []
for audio_batch in encoded_values:
audio_features.append(self.module.forward(audio_batch).to(dtype=self.dtype))
return audio_features