annabeth97c's picture
Update default model
3a8e6af verified
from typing import Optional, List
from dataclasses import field, dataclass
import logging
import subprocess
import pathlib
import torch
import shutil
import glob
import os
import json
import transformers
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers import Trainer
from multi_token.training_data import (
DataArguments,
LMMDataset,
DataCollatorForSupervisedLMMDataset,
)
from multi_token.model_utils import (
make_model_lora,
get_peft_state,
get_peft_state_non_lora,
fix_tokenizer,
MultiTaskType
)
from multi_token.modalities.base_modality import Modality
README_TEMPLATE = """
---
license: apache-2.0
base_model: {base_model}
dataset: {dataset}
tags:
- finetuned
- multimodal
inference: false
---
These are weights for a version of `{base_model}` finetuned for multimodal applications.
### Modalities
{modalities}
### Usage
GitHub: https://github.com/sshh12/multi_token (includes training scripts and basic inference server)
### Dataset
{dataset} ({num_examples} examples)
```
{dataset_example}
```
### Training Device(s)
```
{training_devices_dump}
```
### Model
```
{repr_model}
```
"""
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
remove_unused_columns: bool = field(default=False)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={
"help": "Compress the quantization statistics through double quantization."
},
)
quant_type: str = field(
default="nf4",
metadata={
"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
},
)
pretrain_projectors: bool = field(default=False)
pretrained_projectors_path: Optional[str] = field(default=None)
pretrained_projectors_config: Optional[str] = field(default=None)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
@dataclass
class ModelArguments:
model_name_or_path: str = field(default="mistralai/Mistral-7B-Instruct-v0.1")
model_cls: str = field(default="MistralLMMForCausalLM")
modality_builder: str = field(default="vision_clip")
use_multi_task: int = field(default=MultiTaskType.PROJECTED_MULTI_TASK)
tasks_config: str = field(default="src/sonicverse/configs/tasks.json")
model_lora_path: Optional[str] = field(default="amaai-lab/SonicVerse")
class LMMTrainer(Trainer):
def _save_checkpoint(self, model, trial, metrics=None):
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self._save_extras(output_dir)
super(LMMTrainer, self)._save_checkpoint(model, trial, metrics)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
self._save_extras(output_dir)
super(LMMTrainer, self)._save(output_dir, state_dict)
for unused_dir in glob.iglob(os.path.join(output_dir, "global_step*")):
shutil.rmtree(unused_dir)
def _save_extras(self, output_dir: Optional[str] = None):
self.model.config.save_pretrained(output_dir)
task_names = []
for m in self.model.modalities:
task_names += m.tasks["task_heads"].keys()
non_lora_state_dict = get_peft_state_non_lora(self.model.named_parameters(), task_names)
torch.save(
non_lora_state_dict,
os.path.join(output_dir, "non_lora_trainables.bin"),
)
def _get_training_devices_dump() -> str:
out = subprocess.check_output(
["nvidia-smi", "--query-gpu=gpu_name,gpu_bus_id,vbios_version", "--format=csv"]
)
return out.decode("utf-8").strip()
def train_for_modalities(
model_cls,
training_args: TrainingArguments,
model_args: ModelArguments,
train_data_args: DataArguments,
evaluation_data_args: DataArguments,
modalities: List[Modality],
):
for m in modalities:
m.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
fix_tokenizer(tokenizer)
train_dataset = LMMDataset(train_data_args, tokenizer, modalities)
evaluation_dataset = LMMDataset(evaluation_data_args, tokenizer, modalities)
collator = DataCollatorForSupervisedLMMDataset(tokenizer, modalities)
model = model_cls.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
model.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
model.modalities = modalities
model.config.use_cache = False
model.config.model_cls = model_cls.__name__
model.config.modality_builder = model_args.modality_builder
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if model_args.model_lora_path:
raise ValueError(
"LoRA path not supported for training -- set the output path to an existing model to resume training"
)
if training_args.lora_enable:
logging.info("Adding LoRA adapters...")
model = make_model_lora(model, training_args)
if training_args.pretrained_projectors_path:
projector_weights_og = torch.load(
training_args.pretrained_projectors_path, map_location="cpu"
)
if model_args.use_multi_task==MultiTaskType.SIMPLE_MULTI_TASK:
projector_weights = {}
for k, v in projector_weights_og.items():
for m in modalities:
for task_name in m.tasks["task_heads"].keys():
if task_name in k:
projector_weights[k] = v
else:
projector_weights = {
k: v for k, v in projector_weights_og.items() if "_lmm_projector" in k
}
elif training_args.pretrained_projectors_config:
with open(training_args.pretrained_projectors_config, "r") as f:
pretrained_weights_config = json.load(f)
projector_weights = {}
for pretrained_path_info in pretrained_weights_config["pretrained_paths"]:
pretrained_path = pretrained_path_info["path"]
components = pretrained_path_info["components"]
use_prefix = pretrained_path_info["use_prefix"]
prefix = pretrained_path_info["prefix"]
pretrained_weights = torch.load(pretrained_path, map_location="cpu")
for k, v in pretrained_weights.items():
if any(component in k for component in components):
weight_key = k
if use_prefix:
weight_key = prefix + "." + k
projector_weights[weight_key] = v
else:
projector_weights = {}
model.get_model().initialize_modules(modalities, projector_weights)
task_names = []
tasks = {}
for m in model.modalities:
if m.use_multi_task != MultiTaskType.NO_MULTI_TASK:
tasks = m.tasks
task_names += m.tasks["task_heads"].keys()
if training_args.pretrain_projectors:
model.requires_grad_(False)
for m in modalities:
if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
for task_name in m.tasks["task_heads"].keys():
task_model = getattr(model.get_model(), m.name + "_" + task_name)
for p in task_model.parameters():
p.requires_grad = True
elif m.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
proj = getattr(model.get_model(), m.name + "_lmm_projector")
if "backbone" in m.tasks.keys():
backbone = getattr(proj, "backbone")
for backbone_param in backbone.parameters():
backbone_param.requires_grad = tasks["backbone"]["requires_grad"]
for task in task_names:
task_head = getattr(proj, task)
for task_head_param in task_head.parameters():
task_head_param.requires_grad = tasks["task_heads"][task]["requires_grad"]
if task in tasks["task_projectors"]:
task_projector = getattr(proj, task + "_projector")
for task_projector_param in task_projector.parameters():
task_projector_param.requires_grad = tasks["task_projectors"][task]["requires_grad"]
else:
proj = getattr(model.get_model(), m.name + "_lmm_projector")
for p in proj.parameters():
p.requires_grad = True
os.makedirs(training_args.output_dir, exist_ok=True)
with open(
os.path.join(training_args.output_dir, "model_named_parameters.txt"), "w"
) as f:
for name, param in model.named_parameters():
f.write(f"{name} {param.shape} {param.requires_grad}\n")
with open(os.path.join(training_args.output_dir, "README.md"), "w") as f:
modalities_text = [
f"* {m.__class__.__name__} (use `{m.token}` in text and provide `{m.data_key}`, encoded as {m.token_width} tokens)"
for m in modalities
]
readme_text = README_TEMPLATE.format(
base_model=model_args.model_name_or_path,
dataset=train_data_args.dataset_path,
dataset_example=repr(train_dataset.get_example()),
num_examples=len(train_dataset),
modalities="\n".join(modalities_text),
training_devices_dump=_get_training_devices_dump(),
repr_model=f"{model_cls.__name__}.model =\n\n{repr(model)}",
)
f.write(readme_text)
trainer = LMMTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
data_collator=collator,
train_dataset=train_dataset,
eval_dataset=evaluation_dataset,
)
if list(pathlib.Path(training_args.output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
model.config.save_pretrained(training_args.output_dir)
state_dict = get_peft_state(model.named_parameters(), training_args.lora_bias)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
non_lora_state_dict = get_peft_state_non_lora(model.named_parameters(), task_names)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)