File size: 9,485 Bytes
8c9048a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import DDPMWuerstchenScheduler, WuerstchenPriorPipeline
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
)
from diffusers.pipelines.wuerstchen import WuerstchenPrior
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import enable_full_determinism, require_peft_backend, skip_mps, torch_device


if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


def create_prior_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=unet.config.c,
        )
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


class WuerstchenPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = WuerstchenPriorPipeline
    params = ["prompt"]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "num_images_per_prompt",
        "generator",
        "num_inference_steps",
        "latents",
        "negative_prompt",
        "guidance_scale",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False
    callback_cfg_params = ["text_encoder_hidden_states"]

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config).eval()

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "c_in": 2,
            "c": 8,
            "depth": 2,
            "c_cond": 32,
            "c_r": 8,
            "nhead": 2,
        }

        model = WuerstchenPrior(**model_kwargs)
        return model.eval()

    def get_dummy_components(self):
        prior = self.dummy_prior
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer

        scheduler = DDPMWuerstchenScheduler()

        components = {
            "prior": prior,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "guidance_scale": 4.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_wuerstchen_prior(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.image_embeddings

        image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]

        image_slice = image[0, 0, 0, -10:]
        image_from_tuple_slice = image_from_tuple[0, 0, 0, -10:]
        assert image.shape == (1, 2, 24, 24)

        expected_slice = np.array(
            [
                -7172.837,
                -3438.855,
                -1093.312,
                388.8835,
                -7471.467,
                -7998.1206,
                -5328.259,
                218.00089,
                -2731.5745,
                -8056.734,
            ]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-2

    @skip_mps
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=2e-1,
        )

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"
        test_mean_pixel_difference = False

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference,
            test_mean_pixel_difference=test_mean_pixel_difference,
        )

    @unittest.skip(reason="flaky for now")
    def test_float16_inference(self):
        super().test_float16_inference()

    # override because we need to make sure latent_mean and latent_std to be 0
    def test_callback_inputs(self):
        components = self.get_dummy_components()
        components["latent_mean"] = 0
        components["latent_std"] = 0
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_test(pipe, i, t, callback_kwargs):
            missing_callback_inputs = set()
            for v in pipe._callback_tensor_inputs:
                if v not in callback_kwargs:
                    missing_callback_inputs.add(v)
            self.assertTrue(
                len(missing_callback_inputs) == 0, f"Missing callback tensor inputs: {missing_callback_inputs}"
            )
            last_i = pipe.num_timesteps - 1
            if i == last_i:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)
        inputs["callback_on_step_end"] = callback_inputs_test
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"

        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def get_lora_components(self):
        prior = self.dummy_prior

        prior_lora_config = LoraConfig(
            r=4, lora_alpha=4, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
        )

        prior_lora_attn_procs, prior_lora_layers = create_prior_lora_layers(prior)

        lora_components = {
            "prior_lora_layers": prior_lora_layers,
            "prior_lora_attn_procs": prior_lora_attn_procs,
        }

        return prior, prior_lora_config, lora_components

    @require_peft_backend
    def test_inference_with_prior_lora(self):
        _, prior_lora_config, _ = self.get_lora_components()
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output_no_lora = pipe(**self.get_dummy_inputs(device))
        image_embed = output_no_lora.image_embeddings
        self.assertTrue(image_embed.shape == (1, 2, 24, 24))

        pipe.prior.add_adapter(prior_lora_config)
        self.assertTrue(self.check_if_lora_correctly_set(pipe.prior), "Lora not correctly set in prior")

        output_lora = pipe(**self.get_dummy_inputs(device))
        lora_image_embed = output_lora.image_embeddings

        self.assertTrue(image_embed.shape == lora_image_embed.shape)