File size: 10,243 Bytes
88c922f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
""" Conversion functions for 3rd part state-dicts and non-torch native checkpoint formats.
"""
from typing import Union

import torch
import numpy as np

from .model import CLIP, CustomTextCLIP
from .transformer import TextTransformer, Transformer


@torch.no_grad()
def load_big_vision_weights(model: CustomTextCLIP, checkpoint_path: str):
    """ Load weights from .npz checkpoints for official Google big_vision image-text models

    Currently the SigLIP source models are supported and a CustomTextCLIP destination model
    w/ timm image encoder.
    """
    from timm.layers import resample_patch_embed, resample_abs_pos_embed

    def _n2p(w, t=True):
        if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
            w = w.flatten()
        if t:
            if w.ndim == 4:
                w = w.transpose([3, 2, 0, 1])
            elif w.ndim == 3:
                w = w.transpose([2, 0, 1])
            elif w.ndim == 2:
                w = w.transpose([1, 0])
        return torch.from_numpy(w)

    w = np.load(checkpoint_path)
    interpolation = 'bilinear'
    antialias = False

    def _convert_timm_img(module, prefix):
        embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
        if embed_conv_w.shape[-2:] != module.patch_embed.proj.weight.shape[-2:]:
            embed_conv_w = resample_patch_embed(
                embed_conv_w,
                module.patch_embed.proj.weight.shape[-2:],
                interpolation=interpolation,
                antialias=antialias,
                verbose=True,
            )
        module.patch_embed.proj.weight.copy_(embed_conv_w)
        module.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))

        if module.cls_token is not None:
            module.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))

        pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False)
        if pos_embed_w.shape != module.pos_embed.shape:
            assert False, f'{pos_embed_w.shape}, {module.pos_embed.shape}'
            num_prefix_tokens = 0 if getattr(module, 'no_embed_class', False) else getattr(module, 'num_prefix_tokens', 1)
            pos_embed_w = resample_abs_pos_embed(  # resize pos embedding when different size from pretrained weights
                pos_embed_w,
                new_size=module.patch_embed.grid_size,
                num_prefix_tokens=num_prefix_tokens,
                interpolation=interpolation,
                antialias=antialias,
                verbose=True,
            )
        module.pos_embed.copy_(pos_embed_w)

        mha_sub, b_sub, ln1_sub = (0, 0, 1)
        for i, block in enumerate(module.blocks.children()):
            block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
            mha_prefix = block_prefix + f'MultiHeadDotProductAttention_{mha_sub}/'
            block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
            block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
            block.attn.qkv.weight.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
            block.attn.qkv.bias.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
            block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
            block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
            for r in range(2):
                getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/kernel']))
                getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/bias']))
            block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/scale']))
            block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/bias']))

        module.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
        module.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))

        if module.attn_pool is not None:
            block_prefix = f'{prefix}MAPHead_0/'
            mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/'
            module.attn_pool.latent.copy_(_n2p(w[f'{block_prefix}probe'], t=False))
            module.attn_pool.q.weight.copy_(_n2p(w[f'{mha_prefix}query/kernel'], t=False).flatten(1).T)
            module.attn_pool.q.bias.copy_(_n2p(w[f'{mha_prefix}query/bias'], t=False).reshape(-1))
            module.attn_pool.kv.weight.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('key', 'value')]))
            module.attn_pool.kv.bias.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('key', 'value')]))
            module.attn_pool.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
            module.attn_pool.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
            module.attn_pool.norm.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
            module.attn_pool.norm.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
            for r in range(2):
                getattr(module.attn_pool.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/kernel']))
                getattr(module.attn_pool.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/bias']))

    def _convert_openclip_transformer(module: Transformer, prefix):
        for i, block in enumerate(module.resblocks.children()):
            block_prefix = f'{prefix}encoderblock_{i}/'
            mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/'
            block.ln_1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
            block.ln_1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
            block.attn.in_proj_weight.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
            block.attn.in_proj_bias.copy_(torch.cat([
                _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
            block.attn.out_proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
            block.attn.out_proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
            block.ln_2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_1/scale']))
            block.ln_2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_1/bias']))
            block.mlp.c_fc.weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_0/kernel']))
            block.mlp.c_fc.bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_0/bias']))
            block.mlp.c_proj.weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_1/kernel']))
            block.mlp.c_proj.bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_1/bias']))

    def _convert_openclip_txt(module: TextTransformer, prefix):
        module.token_embedding.weight.copy_(_n2p(w[f'{prefix}Embed_0/embedding'], t=False))
        pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False).squeeze(0)
        module.positional_embedding.copy_(pos_embed_w)
        _convert_openclip_transformer(module.transformer, prefix=prefix + 'Encoder_0/')
        module.ln_final.weight.copy_(_n2p(w[f'{prefix}Encoder_0/encoder_norm/scale']))
        module.ln_final.bias.copy_(_n2p(w[f'{prefix}Encoder_0/encoder_norm/bias']))
        module.text_projection.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
        module.text_projection.bias.copy_(_n2p(w[f'{prefix}head/bias']))

    _convert_timm_img(model.visual.trunk, 'params/img/')
    _convert_openclip_txt(model.text, 'params/txt/')
    model.logit_bias.copy_(_n2p(w['params/b'])[0])
    model.logit_scale.copy_(_n2p(w['params/t'])[0])


@torch.no_grad()
def convert_mobile_clip_state_dict(model: CustomTextCLIP, state_dict, fastvit = True):

    def _convert_timm_img(state_dict):
        if fastvit:
            from timm.models.fastvit import checkpoint_filter_fn
        else:
            from timm.models.vision_transformer_hybrid import checkpoint_filter_fn
        timm_state_dict = checkpoint_filter_fn(state_dict, model.visual.trunk)
        timm_state_dict = {'visual.trunk.' + k: v for k, v in timm_state_dict.items()}
        return timm_state_dict

    def _convert_openclip_txt(state_dict, prefix='text_encoder.'):
        text_dict = {}
        for k, v in state_dict.items():
            if not k.startswith(prefix):
                continue
            k = k.replace(prefix, '')
            k = k.replace('projection_layer', 'text_projection')
            k = k.replace('embedding_layer', 'token_embedding')
            if k.startswith('positional_embedding.pos_embed.pos_embed'):
                k = k.replace('positional_embedding.pos_embed.pos_embed', 'positional_embedding')
                v = v.squeeze()
            k = k.replace('final_layer_norm', 'ln_final')
            k = k.replace('pre_norm_mha.0', 'ln_1')
            k = k.replace('pre_norm_mha.1', 'attn')
            k = k.replace('pre_norm_ffn.0', 'ln_2')
            k = k.replace('pre_norm_ffn.1', 'mlp.c_fc')
            k = k.replace('pre_norm_ffn.4', 'mlp.c_proj')
            k = k.replace('qkv_proj.weight', 'in_proj_weight')
            k = k.replace('qkv_proj.bias', 'in_proj_bias')
            k = k.replace('transformer.', 'transformer.resblocks.')
            text_dict['text.' + k] = v
        return text_dict

    image_dict = _convert_timm_img(state_dict)
    text_dict = _convert_openclip_txt(state_dict)
    out_dict = {**image_dict, **text_dict}
    out_dict['logit_scale'] = state_dict['logit_scale']
    return out_dict


def convert_state_dict(model: Union[CustomTextCLIP, CLIP], state_dict):
    if 'image_encoder.model.patch_embed.0.rbr_conv.0.conv.weight' in state_dict:
        # Apple MobileCLIP s1 & s2 state_dicts (s0 and b not currently supported)
        state_dict = convert_mobile_clip_state_dict(model, state_dict)
    if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict:
        # convert b model
        state_dict = convert_mobile_clip_state_dict(model, state_dict, fastvit=False)
    return state_dict