|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import importlib |
|
import os |
|
import tempfile |
|
import time |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub.repocard import RepoCard |
|
from packaging import version |
|
from safetensors.torch import load_file |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoPipelineForImage2Image, |
|
AutoPipelineForText2Image, |
|
ControlNetModel, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
EulerDiscreteScheduler, |
|
LCMScheduler, |
|
StableDiffusionPipeline, |
|
StableDiffusionXLAdapterPipeline, |
|
StableDiffusionXLControlNetPipeline, |
|
StableDiffusionXLPipeline, |
|
T2IAdapter, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.import_utils import is_accelerate_available, is_peft_available |
|
from diffusers.utils.testing_utils import ( |
|
floats_tensor, |
|
load_image, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
require_peft_backend, |
|
require_peft_version_greater, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate.utils import release_memory |
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
from peft.utils import get_peft_model_state_dict |
|
|
|
|
|
def state_dicts_almost_equal(sd1, sd2): |
|
sd1 = dict(sorted(sd1.items())) |
|
sd2 = dict(sorted(sd2.items())) |
|
|
|
models_are_equal = True |
|
for ten1, ten2 in zip(sd1.values(), sd2.values()): |
|
if (ten1 - ten2).abs().max() > 1e-3: |
|
models_are_equal = False |
|
|
|
return models_are_equal |
|
|
|
|
|
@require_peft_backend |
|
class PeftLoraLoaderMixinTests: |
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipeline_class = None |
|
scheduler_cls = None |
|
scheduler_kwargs = None |
|
has_two_text_encoders = False |
|
unet_kwargs = None |
|
vae_kwargs = None |
|
|
|
def get_dummy_components(self, scheduler_cls=None): |
|
scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler |
|
rank = 4 |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel(**self.unet_kwargs) |
|
|
|
scheduler = scheduler_cls(**self.scheduler_kwargs) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL(**self.vae_kwargs) |
|
|
|
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
|
|
if self.has_two_text_encoders: |
|
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
|
|
text_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
init_lora_weights=False, |
|
) |
|
|
|
unet_lora_config = LoraConfig( |
|
r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipeline_components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"image_encoder": None, |
|
"feature_extractor": None, |
|
} |
|
else: |
|
pipeline_components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
|
|
return pipeline_components, text_lora_config, unet_lora_config |
|
|
|
def get_dummy_inputs(self, with_generator=True): |
|
batch_size = 1 |
|
sequence_length = 10 |
|
num_channels = 4 |
|
sizes = (32, 32) |
|
|
|
generator = torch.manual_seed(0) |
|
noise = floats_tensor((batch_size, num_channels) + sizes) |
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) |
|
|
|
pipeline_inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
if with_generator: |
|
pipeline_inputs.update({"generator": generator}) |
|
|
|
return noise, input_ids, pipeline_inputs |
|
|
|
|
|
def get_dummy_tokens(self): |
|
max_seq_length = 77 |
|
|
|
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) |
|
|
|
prepared_inputs = {} |
|
prepared_inputs["input_ids"] = inputs |
|
return prepared_inputs |
|
|
|
def check_if_lora_correctly_set(self, model) -> bool: |
|
""" |
|
Checks if the LoRA layers are correctly set with peft |
|
""" |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
return True |
|
return False |
|
|
|
def test_simple_inference(self): |
|
""" |
|
Tests a simple inference and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
_, _, inputs = self.get_dummy_inputs() |
|
output_no_lora = pipe(**inputs).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
def test_simple_inference_with_text_lora(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_lora_and_scale(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder + scale argument |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
output_lora_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} |
|
).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + scale should change the output", |
|
) |
|
|
|
output_lora_0_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} |
|
).images |
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + 0 scale should lead to same result as no LoRA", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_fused(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_lora_unloaded(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unload_lora_weights() |
|
|
|
self.assertFalse( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertFalse( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), |
|
"Lora not correctly unloaded in text encoder 2", |
|
) |
|
|
|
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_save_load(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA. |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) |
|
if self.has_two_text_encoders: |
|
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) |
|
|
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
text_encoder_2_lora_layers=text_encoder_2_state_dict, |
|
safe_serialization=False, |
|
) |
|
else: |
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
safe_serialization=False, |
|
) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
pipe.unload_lora_weights() |
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) |
|
|
|
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_save_pretrained(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
|
|
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) |
|
pipe_from_pretrained.to(self.torch_device) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), |
|
"Lora not correctly set in text encoder 2", |
|
) |
|
|
|
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_save_load(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) |
|
unet_state_dict = get_peft_model_state_dict(pipe.unet) |
|
if self.has_two_text_encoders: |
|
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) |
|
|
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
text_encoder_2_lora_layers=text_encoder_2_state_dict, |
|
unet_lora_layers=unet_state_dict, |
|
safe_serialization=False, |
|
) |
|
else: |
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
unet_lora_layers=unet_state_dict, |
|
safe_serialization=False, |
|
) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
pipe.unload_lora_weights() |
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) |
|
|
|
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_and_scale(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder + Unet + scale argument |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
output_lora_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} |
|
).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + scale should change the output", |
|
) |
|
|
|
output_lora_0_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} |
|
).images |
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + 0 scale should lead to same result as no LoRA", |
|
) |
|
|
|
self.assertTrue( |
|
pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, |
|
"The scaling parameter has not been correctly restored!", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_unet_fused(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected - with unet |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_unloaded(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unload_lora_weights() |
|
|
|
self.assertFalse( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" |
|
) |
|
self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertFalse( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), |
|
"Lora not correctly unloaded in text encoder 2", |
|
) |
|
|
|
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_unfused(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.unfuse_lora() |
|
|
|
output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" |
|
) |
|
|
|
|
|
self.assertTrue( |
|
np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
|
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set/delete them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.delete_adapters("adapter-1") |
|
output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
pipe.delete_adapters("adapter-2") |
|
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
pipe.delete_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter_weighted(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) |
|
output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Weighted adapter and mixed adapter should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
|
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_lora_fuse_nan(self): |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
|
|
with torch.no_grad(): |
|
pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float( |
|
"inf" |
|
) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
pipe.fuse_lora(safe_fusing=True) |
|
|
|
|
|
pipe.fuse_lora(safe_fusing=False) |
|
|
|
out = pipe("test", num_inference_steps=2, output_type="np").images |
|
|
|
self.assertTrue(np.isnan(out).all()) |
|
|
|
def test_get_adapters(self): |
|
""" |
|
Tests a simple usecase where we attach multiple adapters and check if the results |
|
are the expected results |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
adapter_names = pipe.get_active_adapters() |
|
self.assertListEqual(adapter_names, ["adapter-1"]) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
adapter_names = pipe.get_active_adapters() |
|
self.assertListEqual(adapter_names, ["adapter-2"]) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) |
|
|
|
def test_get_list_adapters(self): |
|
""" |
|
Tests a simple usecase where we attach multiple adapters and check if the results |
|
are the expected results |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
adapter_names = pipe.get_list_adapters() |
|
self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]}) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
adapter_names = pipe.get_list_adapters() |
|
self.assertDictEqual( |
|
adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]} |
|
) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
self.assertDictEqual( |
|
pipe.get_list_adapters(), |
|
{"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]}, |
|
) |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-3") |
|
self.assertDictEqual( |
|
pipe.get_list_adapters(), |
|
{"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]}, |
|
) |
|
|
|
@require_peft_version_greater(peft_version="0.6.2") |
|
def test_simple_inference_with_text_lora_unet_fused_multi(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected - with unet and multi-adapter case |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1"]) |
|
ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.fuse_lora(adapter_names=["adapter-1"]) |
|
|
|
|
|
outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3), |
|
"Fused lora should not change the output", |
|
) |
|
|
|
pipe.unfuse_lora() |
|
pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"]) |
|
|
|
|
|
output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should not change the output", |
|
) |
|
|
|
@unittest.skip("This is failing for now - need to investigate") |
|
def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder" |
|
) |
|
self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) |
|
|
|
|
|
_ = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
def test_modify_padding_mode(self): |
|
def set_pad_mode(network, mode="circular"): |
|
for _, module in network.named_modules(): |
|
if isinstance(module, torch.nn.Conv2d): |
|
module.padding_mode = mode |
|
|
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, _, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(self.torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_pad_mode = "circular" |
|
set_pad_mode(pipe.vae, _pad_mode) |
|
set_pad_mode(pipe.unet, _pad_mode) |
|
|
|
_, _, inputs = self.get_dummy_inputs() |
|
_ = pipe(**inputs).images |
|
|
|
|
|
class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
pipeline_class = StableDiffusionPipeline |
|
scheduler_cls = DDIMScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"clip_sample": False, |
|
"set_alpha_to_one": False, |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"cross_attention_dim": 32, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_integration_move_lora_cpu(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_id, adapter_name="adapter-1") |
|
pipe.load_lora_weights(lora_id, adapter_name="adapter-2") |
|
pipe = pipe.to("cuda") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.unet), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
|
|
|
|
pipe.set_lora_device(["adapter-1"], "cpu") |
|
|
|
for name, module in pipe.unet.named_modules(): |
|
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device == torch.device("cpu")) |
|
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device != torch.device("cpu")) |
|
|
|
for name, module in pipe.text_encoder.named_modules(): |
|
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device == torch.device("cpu")) |
|
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(module.weight.device != torch.device("cpu")) |
|
|
|
pipe.set_lora_device(["adapter-1"], 0) |
|
|
|
for n, m in pipe.unet.named_modules(): |
|
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
for n, m in pipe.text_encoder.named_modules(): |
|
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda") |
|
|
|
for n, m in pipe.unet.named_modules(): |
|
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
for n, m in pipe.text_encoder.named_modules(): |
|
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)): |
|
self.assertTrue(m.weight.device != torch.device("cpu")) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_integration_logits_with_scale(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) |
|
pipe.load_lora_weights(lora_id) |
|
pipe = pipe.to("cuda") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder 2", |
|
) |
|
|
|
prompt = "a red sks dog" |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
num_inference_steps=15, |
|
cross_attention_kwargs={"scale": 0.5}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
|
|
expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321]) |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_integration_logits_no_scale(self): |
|
path = "runwayml/stable-diffusion-v1-5" |
|
lora_id = "takuma104/lora-test-text-encoder-lora-target" |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32) |
|
pipe.load_lora_weights(lora_id) |
|
pipe = pipe.to("cuda") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
prompt = "a red sks dog" |
|
|
|
images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images |
|
|
|
expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084]) |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
@nightly |
|
@require_torch_gpu |
|
def test_integration_logits_multi_adapter(self): |
|
path = "stabilityai/stable-diffusion-xl-base-1.0" |
|
lora_id = "CiroN2022/toy-face" |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") |
|
pipe = pipe.to("cuda") |
|
|
|
self.assertTrue( |
|
self.check_if_lora_correctly_set(pipe.unet), |
|
"Lora not correctly set in Unet", |
|
) |
|
|
|
prompt = "toy_face of a hacker with a hoodie" |
|
|
|
lora_scale = 0.9 |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
num_inference_steps=30, |
|
generator=torch.manual_seed(0), |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
output_type="np", |
|
).images |
|
expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") |
|
pipe.set_adapters("pixel") |
|
|
|
prompt = "pixel art, a hacker with a hoodie, simple, flat colors" |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array( |
|
[0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] |
|
) |
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
|
|
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": 1.0}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) |
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
|
|
pipe.disable_lora() |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) |
|
self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3)) |
|
|
|
|
|
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
has_two_text_encoders = True |
|
pipeline_class = StableDiffusionXLPipeline |
|
scheduler_cls = EulerDiscreteScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"timestep_spacing": "leading", |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"attention_head_dim": (2, 4), |
|
"use_linear_projection": True, |
|
"addition_embed_type": "text_time", |
|
"addition_time_embed_dim": 8, |
|
"transformer_layers_per_block": (1, 2), |
|
"projection_class_embeddings_input_dim": 80, |
|
"cross_attention_dim": 64, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
"sample_size": 128, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
pipeline_class = StableDiffusionPipeline |
|
scheduler_cls = DDIMScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"clip_sample": False, |
|
"set_alpha_to_one": False, |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"cross_attention_dim": 32, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_dreambooth_old_format(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe( |
|
"A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-4)) |
|
release_memory(pipe) |
|
|
|
def test_dreambooth_text_encoder_new_format(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/lora-trained" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-4)) |
|
release_memory(pipe) |
|
|
|
def test_a1111(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to( |
|
torch_device |
|
) |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_lycoris(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16" |
|
).to(torch_device) |
|
lora_model_id = "hf-internal-testing/edgLycorisMugler-light" |
|
lora_filename = "edgLycorisMugler-light.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_a1111_with_model_cpu_offload(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_a1111_with_sequential_cpu_offload(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None) |
|
pipe.enable_sequential_cpu_offload() |
|
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora" |
|
lora_filename = "light_and_shadow.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_kohya_sd_v15_with_higher_dimensions(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
lora_model_id = "hf-internal-testing/urushisato-lora" |
|
lora_filename = "urushisato_v15.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_vanilla_funetuning(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4" |
|
card = RepoCard.load(lora_model_id) |
|
base_model_id = card.data.to_dict()["base_model"] |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None) |
|
pipe = pipe.to(torch_device) |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-4)) |
|
release_memory(pipe) |
|
|
|
def test_unload_kohya_lora(self): |
|
generator = torch.manual_seed(0) |
|
prompt = "masterpiece, best quality, mountain" |
|
num_inference_steps = 2 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
initial_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
initial_images = initial_images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" |
|
lora_filename = "Colored_Icons_by_vizsumit.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images = lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unload_lora_weights() |
|
generator = torch.manual_seed(0) |
|
unloaded_lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertFalse(np.allclose(initial_images, lora_images)) |
|
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_load_unload_load_kohya_lora(self): |
|
|
|
|
|
|
|
generator = torch.manual_seed(0) |
|
prompt = "masterpiece, best quality, mountain" |
|
num_inference_steps = 2 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to( |
|
torch_device |
|
) |
|
initial_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
initial_images = initial_images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora" |
|
lora_filename = "Colored_Icons_by_vizsumit.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images = lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unload_lora_weights() |
|
generator = torch.manual_seed(0) |
|
unloaded_lora_images = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertFalse(np.allclose(initial_images, lora_images)) |
|
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3)) |
|
|
|
|
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
generator = torch.manual_seed(0) |
|
lora_images_again = pipe( |
|
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps |
|
).images |
|
lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_not_empty_state_dict(self): |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
).to("cuda") |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") |
|
lcm_lora = load_file(cached_file) |
|
|
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertTrue(lcm_lora != {}) |
|
release_memory(pipe) |
|
|
|
def test_load_unload_load_state_dict(self): |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
).to("cuda") |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors") |
|
lcm_lora = load_file(cached_file) |
|
previous_state_dict = lcm_lora.copy() |
|
|
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertDictEqual(lcm_lora, previous_state_dict) |
|
|
|
pipe.unload_lora_weights() |
|
pipe.load_lora_weights(lcm_lora, adapter_name="lcm") |
|
self.assertDictEqual(lcm_lora, previous_state_dict) |
|
|
|
release_memory(pipe) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
has_two_text_encoders = True |
|
pipeline_class = StableDiffusionXLPipeline |
|
scheduler_cls = EulerDiscreteScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"timestep_spacing": "leading", |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"attention_head_dim": (2, 4), |
|
"use_linear_projection": True, |
|
"addition_embed_type": "text_time", |
|
"addition_time_embed_dim": 8, |
|
"transformer_layers_per_block": (1, 2), |
|
"projection_class_embeddings_input_dim": 80, |
|
"cross_attention_dim": 64, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
"sample_size": 128, |
|
} |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_sdxl_0_9_lora_one(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora" |
|
lora_filename = "daiton-xl-lora-test.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_0_9_lora_two(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora" |
|
lora_filename = "saijo.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_0_9_lora_three(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora" |
|
lora_filename = "kame_sdxl_v2-000020-16rank.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=5e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-4)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_lcm_lora(self): |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdxl" |
|
|
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdv1_5_lcm_lora(self): |
|
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdv1-5" |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdv1_5_lcm_lora_img2img(self): |
|
pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png" |
|
) |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdv1-5" |
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"snowy mountain", |
|
generator=generator, |
|
image=init_image, |
|
strength=0.5, |
|
num_inference_steps=4, |
|
guidance_scale=0.5, |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_fusion(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
pipe.fuse_lora() |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-4)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_unfusion(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.fuse_lora() |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 |
|
).images |
|
images_with_fusion = images.flatten() |
|
|
|
pipe.unfuse_lora() |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 |
|
).images |
|
images_without_fusion = images.flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion) |
|
assert max_diff < 1e-4 |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_unfusion_effectivity(self): |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
original_image_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
_ = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_fusion_efficiency(self): |
|
generator = torch.Generator().manual_seed(0) |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
start_time = time.time() |
|
for _ in range(3): |
|
pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
end_time = time.time() |
|
elapsed_time_non_fusion = end_time - start_time |
|
|
|
del pipe |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
|
|
|
|
|
|
pipe.unload_lora_weights() |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
start_time = time.time() |
|
for _ in range(3): |
|
pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
end_time = time.time() |
|
elapsed_time_fusion = end_time - start_time |
|
|
|
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_last_ben(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "TheLastBen/Papercut_SDXL" |
|
lora_filename = "papercut.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_fuse_unfuse_all(self): |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) |
|
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) |
|
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) |
|
unet_sd = copy.deepcopy(pipe.unet.state_dict()) |
|
|
|
pipe.load_lora_weights( |
|
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 |
|
) |
|
|
|
fused_te_state_dict = pipe.text_encoder.state_dict() |
|
fused_te_2_state_dict = pipe.text_encoder_2.state_dict() |
|
unet_state_dict = pipe.unet.state_dict() |
|
|
|
peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0") |
|
|
|
def remap_key(key, sd): |
|
|
|
if (key in sd) or (not peft_ge_070): |
|
return key |
|
|
|
|
|
if key.endswith(".weight"): |
|
key = key[:-7] + ".base_layer.weight" |
|
elif key.endswith(".bias"): |
|
key = key[:-5] + ".base_layer.bias" |
|
return key |
|
|
|
for key, value in text_encoder_1_sd.items(): |
|
key = remap_key(key, fused_te_state_dict) |
|
self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) |
|
|
|
for key, value in text_encoder_2_sd.items(): |
|
key = remap_key(key, fused_te_2_state_dict) |
|
self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) |
|
|
|
for key, value in unet_state_dict.items(): |
|
self.assertTrue(torch.allclose(unet_state_dict[key], value)) |
|
|
|
pipe.fuse_lora() |
|
pipe.unload_lora_weights() |
|
|
|
assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) |
|
assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) |
|
assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) |
|
release_memory(pipe) |
|
del unet_sd, text_encoder_1_sd, text_encoder_2_sd |
|
|
|
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_sequential_cpu_offload() |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipe) |
|
|
|
def test_sd_load_civitai_empty_network_alpha(self): |
|
""" |
|
This test simply checks that loading a LoRA with an empty network alpha works fine |
|
See: https://github.com/huggingface/diffusers/issues/5606 |
|
""" |
|
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda") |
|
pipeline.enable_sequential_cpu_offload() |
|
civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors") |
|
pipeline.load_lora_weights(civitai_path, adapter_name="ahri") |
|
|
|
images = pipeline( |
|
"ahri, masterpiece, league of legends", |
|
output_type="np", |
|
generator=torch.manual_seed(156), |
|
num_inference_steps=5, |
|
).images |
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995]) |
|
|
|
self.assertTrue(np.allclose(images, expected, atol=1e-3)) |
|
release_memory(pipeline) |
|
|
|
def test_controlnet_canny_lora(self): |
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet |
|
) |
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "corgi" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333]) |
|
assert np.allclose(original_image, expected_image, atol=1e-04) |
|
release_memory(pipe) |
|
|
|
def test_sdxl_t2i_adapter_canny_lora(self): |
|
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to( |
|
"cpu" |
|
) |
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
adapter=adapter, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors") |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "toy" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
image_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226]) |
|
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4 |
|
|
|
@nightly |
|
def test_sequential_fuse_unfuse(self): |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) |
|
|
|
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
image_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images_2 = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
image_slice_2 = images_2[0, -3:, -3:, -1].flatten() |
|
|
|
self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3)) |
|
release_memory(pipe) |
|
|