|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline |
|
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt |
|
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = WuerstchenDecoderPipeline |
|
params = ["prompt"] |
|
batch_params = ["image_embeddings", "prompt", "negative_prompt"] |
|
required_optional_params = [ |
|
"num_images_per_prompt", |
|
"num_inference_steps", |
|
"latents", |
|
"negative_prompt", |
|
"guidance_scale", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"] |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 32 |
|
|
|
@property |
|
def block_out_channels_0(self): |
|
return self.time_input_dim |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
projection_dim=self.text_embedder_hidden_size, |
|
hidden_size=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config).eval() |
|
|
|
@property |
|
def dummy_vqgan(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"bottleneck_blocks": 1, |
|
"num_vq_embeddings": 2, |
|
} |
|
model = PaellaVQModel(**model_kwargs) |
|
return model.eval() |
|
|
|
@property |
|
def dummy_decoder(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"c_cond": self.text_embedder_hidden_size, |
|
"c_hidden": [320], |
|
"nhead": [-1], |
|
"blocks": [4], |
|
"level_config": ["CT"], |
|
"clip_embd": self.text_embedder_hidden_size, |
|
"inject_effnet": [False], |
|
} |
|
|
|
model = WuerstchenDiffNeXt(**model_kwargs) |
|
return model.eval() |
|
|
|
def get_dummy_components(self): |
|
decoder = self.dummy_decoder |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
vqgan = self.dummy_vqgan |
|
|
|
scheduler = DDPMWuerstchenScheduler() |
|
|
|
components = { |
|
"decoder": decoder, |
|
"vqgan": vqgan, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"scheduler": scheduler, |
|
"latent_dim_scale": 4.0, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image_embeddings": torch.ones((1, 4, 4, 4), device=device), |
|
"prompt": "horse", |
|
"generator": generator, |
|
"guidance_scale": 1.0, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_wuerstchen_decoder(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@skip_mps |
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=1e-5) |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device == "cpu" |
|
test_mean_pixel_difference = False |
|
|
|
self._test_attention_slicing_forward_pass( |
|
test_max_difference=test_max_difference, |
|
test_mean_pixel_difference=test_mean_pixel_difference, |
|
) |
|
|
|
@unittest.skip(reason="bf16 not supported and requires CUDA") |
|
def test_float16_inference(self): |
|
super().test_float16_inference() |
|
|