app.py
Browse files
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from pdf2image import convert_from_path
|
4 |
+
from byaldi import RAGMultiModalModel
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
import torch
|
8 |
+
import time
|
9 |
+
import json
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Check device availability (GPU/CPU)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
# Function to load models only once
|
16 |
+
@st.cache_resource
|
17 |
+
def initialize_models():
|
18 |
+
# Load models for text extraction
|
19 |
+
multimodal_model = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
20 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
21 |
+
"Qwen/Qwen2-VL-7B-Instruct",
|
22 |
+
trust_remote_code=True,
|
23 |
+
torch_dtype=torch.bfloat16
|
24 |
+
).to(device).eval()
|
25 |
+
|
26 |
+
qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
|
27 |
+
|
28 |
+
return multimodal_model, qwen_model, qwen_processor
|
29 |
+
|
30 |
+
multimodal_model, qwen_model, qwen_processor = initialize_models()
|
31 |
+
|
32 |
+
# Upload section
|
33 |
+
st.title("Document Text Extraction")
|
34 |
+
doc_file = st.file_uploader("Upload Image File", type=[ "png", "jpg", "jpeg"])
|
35 |
+
|
36 |
+
# Store extracted text across reruns
|
37 |
+
if "document_text" not in st.session_state:
|
38 |
+
st.session_state.document_text = None
|
39 |
+
|
40 |
+
if doc_file is not None:
|
41 |
+
# Check file extension
|
42 |
+
file_ext = doc_file.name.split('.')[-1].lower()
|
43 |
+
document_image = Image.open(doc_file) # Handle image files directly
|
44 |
+
|
45 |
+
# Display uploaded document image
|
46 |
+
st.image(document_image, caption="Document Preview", use_column_width=True)
|
47 |
+
|
48 |
+
# Create a unique index name for the document
|
49 |
+
index_id = f"doc_index_{int(time.time())}" # Timestamp-based unique index
|
50 |
+
|
51 |
+
# Only process if text hasn't been extracted yet
|
52 |
+
if st.session_state.document_text is None:
|
53 |
+
st.write(f"Indexing document with unique ID: {index_id}...")
|
54 |
+
temp_image_path = "temp_image.png"
|
55 |
+
document_image.save(temp_image_path)
|
56 |
+
|
57 |
+
# Index the image using multimodal model
|
58 |
+
multimodal_model.index(
|
59 |
+
input_path=temp_image_path,
|
60 |
+
index_name=index_id,
|
61 |
+
store_collection_with_index=False,
|
62 |
+
overwrite=False
|
63 |
+
)
|
64 |
+
|
65 |
+
# Define the extraction query
|
66 |
+
extraction_query = "Extract all English and Hindi text from this document"
|
67 |
+
st.write("Querying the document with the extraction query...")
|
68 |
+
|
69 |
+
# Search results from RAG
|
70 |
+
search_results = multimodal_model.search(extraction_query, k=1)
|
71 |
+
|
72 |
+
# Prepare input data for Qwen model
|
73 |
+
input_message = [
|
74 |
+
{
|
75 |
+
"role": "user",
|
76 |
+
"content": [
|
77 |
+
{"type": "image", "image": document_image},
|
78 |
+
{"type": "text", "text": extraction_query},
|
79 |
+
],
|
80 |
+
}
|
81 |
+
]
|
82 |
+
|
83 |
+
# Prepare inputs for Qwen2-VL
|
84 |
+
input_text = qwen_processor.apply_chat_template(input_message, tokenize=False, add_generation_prompt=True)
|
85 |
+
vision_inputs, _ = process_vision_info(input_message)
|
86 |
+
|
87 |
+
model_inputs = qwen_processor(
|
88 |
+
text=[input_text],
|
89 |
+
images=vision_inputs,
|
90 |
+
padding=True,
|
91 |
+
return_tensors="pt",
|
92 |
+
)
|
93 |
+
|
94 |
+
model_inputs = model_inputs.to(device)
|
95 |
+
|
96 |
+
# Generate text output from the image using Qwen2-VL model
|
97 |
+
st.write("Generating extracted text...")
|
98 |
+
output_ids = qwen_model.generate(**model_inputs, max_new_tokens=100)
|
99 |
+
|
100 |
+
generated_ids_trimmed = [
|
101 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(model_inputs.input_ids, output_ids)
|
102 |
+
]
|
103 |
+
|
104 |
+
extracted_output = qwen_processor.batch_decode(
|
105 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
106 |
+
)
|
107 |
+
|
108 |
+
# Store the extracted text in session state
|
109 |
+
st.session_state.document_text = extracted_output[0]
|
110 |
+
|
111 |
+
# Display extracted text in JSON format
|
112 |
+
extracted_text_content = st.session_state.document_text
|
113 |
+
structured_data = {"extracted_text": extracted_text_content}
|
114 |
+
|
115 |
+
st.subheader("Extracted Text in JSON:")
|
116 |
+
st.json(structured_data)
|
117 |
+
|
118 |
+
# Implement search functionality in extracted text
|
119 |
+
if st.session_state.document_text:
|
120 |
+
with st.form(key='text_search_form'):
|
121 |
+
search_input = st.text_input("Enter a keyword to search within the extracted text:")
|
122 |
+
search_action = st.form_submit_button("Search")
|
123 |
+
|
124 |
+
if search_action and search_input:
|
125 |
+
# Split the extracted text into lines for searching
|
126 |
+
full_text = st.session_state.document_text
|
127 |
+
lines = full_text.split('\n')
|
128 |
+
|
129 |
+
results = []
|
130 |
+
# Search for keyword in each line and collect lines that contain the keyword
|
131 |
+
for line in lines:
|
132 |
+
if re.search(re.escape(search_input), line, re.IGNORECASE):
|
133 |
+
# Highlight keyword in the line
|
134 |
+
highlighted_line = re.sub(f"({re.escape(search_input)})", r"**\1**", line, flags=re.IGNORECASE)
|
135 |
+
results.append(highlighted_line)
|
136 |
+
|
137 |
+
# Display search results
|
138 |
+
st.subheader("Search Results:")
|
139 |
+
if not results:
|
140 |
+
st.write("No matches found.")
|
141 |
+
else:
|
142 |
+
for result in results:
|
143 |
+
st.markdown(result)
|