Update app.py
Browse files
app.py
CHANGED
|
@@ -10,20 +10,25 @@ model_name = "Rahmat82/t5-small-finetuned-summarization-xsum"
|
|
| 10 |
model = ORTModelForSeq2SeqLM.from_pretrained(model_name, export=True)
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 12 |
|
| 13 |
-
# Create summarizer pipeline
|
| 14 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device_map="auto", batch_size=12)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
def summarize_text(text):
|
| 18 |
if not text.strip():
|
| 19 |
return "Please enter some text."
|
| 20 |
|
| 21 |
-
# Tokenize and truncate to
|
| 22 |
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
| 23 |
input_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
result = summarizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return result[0]["summary_text"]
|
| 28 |
|
| 29 |
# Gradio app
|
|
@@ -31,9 +36,9 @@ app = gr.Interface(
|
|
| 31 |
fn=summarize_text,
|
| 32 |
inputs=gr.Textbox(lines=15, placeholder="Paste your text here...", label="Input Text"),
|
| 33 |
outputs=gr.Textbox(label="Summary"),
|
| 34 |
-
title="🚀 ONNX-Powered T5 Summarizer (
|
| 35 |
-
description="Summarize long text
|
| 36 |
)
|
| 37 |
|
| 38 |
-
# Launch
|
| 39 |
app.launch()
|
|
|
|
| 10 |
model = ORTModelForSeq2SeqLM.from_pretrained(model_name, export=True)
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 12 |
|
| 13 |
+
# Create summarizer pipeline
|
| 14 |
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device_map="auto", batch_size=12)
|
| 15 |
|
| 16 |
+
# Summarization function with max input tokens and medium summary length
|
| 17 |
def summarize_text(text):
|
| 18 |
if not text.strip():
|
| 19 |
return "Please enter some text."
|
| 20 |
|
| 21 |
+
# Tokenize and truncate to 1024 tokens
|
| 22 |
inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
| 23 |
input_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
|
| 24 |
|
| 25 |
+
# Generate medium-length summary
|
| 26 |
+
result = summarizer(
|
| 27 |
+
input_text,
|
| 28 |
+
min_length=30, # 👈 medium minimum length
|
| 29 |
+
max_length=100, # 👈 medium maximum length
|
| 30 |
+
do_sample=False
|
| 31 |
+
)
|
| 32 |
return result[0]["summary_text"]
|
| 33 |
|
| 34 |
# Gradio app
|
|
|
|
| 36 |
fn=summarize_text,
|
| 37 |
inputs=gr.Textbox(lines=15, placeholder="Paste your text here...", label="Input Text"),
|
| 38 |
outputs=gr.Textbox(label="Summary"),
|
| 39 |
+
title="🚀 ONNX-Powered T5 Summarizer (Medium Summary)",
|
| 40 |
+
description="Summarize long text into a medium-length summary using an ONNX-accelerated T5-small model (max input: 1024 tokens)"
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Launch
|
| 44 |
app.launch()
|