File size: 58,198 Bytes
7cb1242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="description" content="Advanced NLP Sentiment Analysis Web Application">
<meta name="keywords" content="sentiment analysis, NLP, AI, machine learning, Flask app, emotion analysis, pretrained models, transformer models, DistilBERT, RoBERTa, GoEmotions, Hugging Face, Transformers, text classification, polarity detection, confidence scores, visualization, word cloud, tokenization, lemmatization, stemming, normalization, NER, named entity recognition, POS tagging, part-of-speech, spaCy, NLTK, CPU PyTorch, web app, Aradhya Pavan H S, AIML Engineer, aradhya pavan, AradhyaPavan, https://github.com/aradhyapavan, https://www.linkedin.com/in/aradhya-pavan/">
<meta name="author" content="Aradhya Pavan H S, AIML Engineer, aradhya pavan, AradhyaPavan, https://github.com/aradhyapavan, https://www.linkedin.com/in/aradhya-pavan/">
<meta name="robots" content="index, follow">
<meta name="theme-color" content="#0ea5e9">
<meta name="application-name" content="NLP Sentiment Analysis">
<meta name="generator" content="Flask">
<!-- Open Graph -->
<meta property="og:type" content="website">
<meta property="og:site_name" content="NLP Sentiment Analysis">
<meta property="og:title" content="NLP Sentiment Analysis - Advanced AI Text Analysis">
<meta property="og:description" content="Advanced NLP Sentiment Analysis Web Application">
<meta property="og:url" content="{{ request.url_root }}">
<meta property="og:image" content="{{ request.url_root }}static/nlpa.png">
<meta property="og:see_also" content="https://www.linkedin.com/in/aradhya-pavan/">
<link rel="me" href="https://www.linkedin.com/in/aradhya-pavan/">
<link rel="canonical" href="{{ request.url_root }}">
<title>NLP Sentiment Analysis - Advanced AI Text Analysis</title>
<link rel="icon" href="favicon_io/favicon.ico">
<link rel="apple-touch-icon" sizes="180x180" href="/static/favicon_io/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="/static/favicon_io/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/static/favicon_io/favicon-16x16.png">
<link rel="manifest" href="/static/favicon_io/site.webmanifest">
<!-- Bootstrap CSS -->
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
<!-- Font Awesome for Icons -->
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css" rel="stylesheet">
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Poppins:wght@300;400;500;600;700&display=swap" rel="stylesheet">
<!-- Custom Stylesheet -->
<link rel="stylesheet" href="/static/css/styles.css">
</head>
<body>
<div class="docs-fab">
<button type="button" class="btn btn-docs" data-bs-toggle="modal" data-bs-target="#docsModal">
<i class="fas fa-book"></i> Documentation
</button>
</div>
<div class="container">
<!-- Header Section -->
<div class="header-section fade-in-up mt-5">
<div class="logo-container">
<img src="/static/nlpa.png" alt="NLP Sentiment Analysis" class="logo-img">
</div>
<h1 class="main-title">NLP <span class="highlight">Sentiment Analysis</span></h1>
<p class="subtitle">Sentiment analysis using pretrained models</p>
</div>
<!-- Main Application Card -->
<div class="app-card fade-in-up">
<div class="card-header">
<h2 class="card-title">Sentiment Analysis Application</h2>
<p class="card-subtitle">Analyze text sentiment using pretrained models</p>
</div>
<form id="sentimentForm" action="/analyze" method="POST" enctype="multipart/form-data">
<div class="form-group">
<label for="inputText" class="form-label">
<i class="fas fa-edit me-2"></i>Enter Text (max 300 words)
</label>
<textarea
class="form-control"
id="inputText"
name="text"
rows="6"
placeholder="Enter your text here for sentiment analysis..."
required
>{{ text or '' }}</textarea>
</div>
<div class="form-group">
<div id="file-upload-section" class="file-upload-section">
<label for="file" class="form-label">
<i class="fas fa-cloud-upload-alt me-2"></i>Or Upload File (.txt or .csv)
</label>
<input class="form-control" type="file" name="file" id="file" accept=".txt,.csv">
<button type="button" class="btn remove-file-btn" id="removeFileBtn">
<i class="fas fa-times me-2"></i>Remove File
</button>
{% if file_uploaded %}
<div class="alert alert-success mt-2">
<i class="fas fa-check-circle me-2"></i>File uploaded successfully!
</div>
{% endif %}
</div>
</div>
<div class="form-group">
<div class="model-selection">
<label for="model_type" class="form-label">
<i class="fas fa-brain me-2"></i>Choose AI Model
</label>
<select class="form-select" name="model_type" id="model_type">
<option value="default" {% if model_type == 'default' %}selected{% endif %}>
🚀 DistilBERT - High Performance Sentiment Analysis
</option>
<option value="roberta" {% if model_type == 'roberta' %}selected{% endif %}>
🎯 RoBERTa - Social Media & Twitter Optimized
</option>
<option value="emotion" {% if model_type == 'emotion' %}selected{% endif %}>
🎭 Emotion - Advanced Multi-Emotion Recognition
</option>
</select>
</div>
</div>
<div class="form-group">
<div id="word-count" class="word-count" style="display: none;">
<i class="fas fa-info-circle me-2"></i>
<span id="word-count-text"></span>
</div>
</div>
<button type="submit" class="btn btn-analyze" id="analyze-btn" disabled>
<i class="fas fa-magic me-2"></i>Analyze Sentiment
</button>
</form>
<!-- Error Display -->
{% if error %}
<div class="alert alert-danger mt-4" role="alert">
<i class="fas fa-exclamation-triangle me-2"></i>
<strong>Error:</strong> {{ error }}
</div>
{% endif %}
</div>
</div>
<!-- Note Section (moved above results) -->
<div class="note-section note-narrow">
<p class="note-text">
<span class="me-2">💡</span>
<strong>Pro Tip:</strong> Use our sample text for testing or download it for offline analysis.
The AI models provide detailed sentiment analysis with confidence scores.
</p>
<div class="action-buttons">
<button type="button" class="btn btn-action btn-view" data-bs-toggle="modal" data-bs-target="#exampleTextModal">
<i class="fas fa-eye"></i>View Example Text
</button>
<a href="/static/text/sample.txt" class="btn btn-action btn-download" download>
<i class="fas fa-download"></i>Download Sample TXT
</a>
</div>
</div>
<!-- Results Display -->
{% if sentiment %}
<!-- Results Header -->
<div class="results-header mt-4">
<h2 class="results-title">
<i class="fas fa-chart-line"></i>Analysis Results
</h2>
<div class="results-summary">
<span class="summary-item">
<i class="fas fa-clock"></i>Analysis completed
</span>
<span class="summary-item">
<i class="fas fa-words"></i>{{ total_words }} words processed
</span>
</div>
</div>
<!-- Main Sentiment Result -->
<div class="main-sentiment-card">
<div class="sentiment-hero">
<div class="sentiment-icon">
{% if sentiment.lower() == 'positive' %}
<i class="fas fa-smile-beam"></i>
{% elif sentiment.lower() == 'negative' %}
<i class="fas fa-frown"></i>
{% else %}
<i class="fas fa-meh"></i>
{% endif %}
</div>
<div class="sentiment-content">
<h3 class="sentiment-label {{ sentiment.lower() }}">{{ sentiment }}</h3>
{% if probabilities %}
<div class="confidence-meter">
<div class="confidence-bar">
{% if probabilities is mapping %}
{% set max_prob = probabilities[sentiment] | max %}
<div class="confidence-fill" style="width: {{ "%.1f"|format(max_prob * 100) }}%"></div>
{% else %}
{% set max_prob = probabilities | max %}
<div class="confidence-fill" style="width: {{ "%.1f"|format(max_prob * 100) }}%"></div>
{% endif %}
</div>
{% if probabilities is mapping %}
{% set max_prob = probabilities[sentiment] | max %}
<span class="confidence-text">Confidence: {{ "%.1f"|format(max_prob * 100) }}%</span>
{% else %}
{% set max_prob = probabilities | max %}
<span class="confidence-text">Confidence: {{ "%.1f"|format(max_prob * 100) }}%</span>
{% endif %}
</div>
{% endif %}
</div>
</div>
</div>
<!-- Text Cleaning Card -->
<div class="text-cleaning-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-edit"></i>
</div>
<div class="step-title-section">
<h4 class="step-title">Text Cleaning</h4>
<p class="step-description">Removes special characters, extra spaces, and unwanted elements to prepare clean text for analysis</p>
</div>
<div class="card-toolbar">
<button class="toolbar-btn" onclick="copySectionText('cleaned-text')" title="Copy"><i class="fas fa-copy"></i></button>
<button class="toolbar-btn" onclick="downloadSection('cleaned-text','cleaned_text.txt')" title="Download"><i class="fas fa-download"></i></button>
<button class="toolbar-btn" onclick="toggleExpand(this)" title="Expand/Collapse"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="cleaned-text">
<div class="text-box">
<h5>Cleaned Text:</h5>
<p class="processed-text">{{ cleaned_text }}</p>
</div>
{% if removed_text %}
<div class="meta-box">
<h5>Removed Elements:</h5>
<p class="meta-text">{{ removed_text }}</p>
</div>
{% endif %}
</div>
</div>
<!-- Normalization Card -->
<div class="normalization-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-language"></i>
</div>
<div class="step-title-section">
<h4 class="step-title">Normalization</h4>
<p class="step-description">Converts text to lowercase and standardizes formatting for consistent analysis</p>
</div>
<div class="card-toolbar">
<button class="toolbar-btn" onclick="copySectionText('normalized-text')" title="Copy"><i class="fas fa-copy"></i></button>
<button class="toolbar-btn" onclick="downloadSection('normalized-text','normalized_text.txt')" title="Download"><i class="fas fa-download"></i></button>
<button class="toolbar-btn" onclick="toggleExpand(this)" title="Expand/Collapse"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="normalized-text">
<div class="text-box">
<h5>Normalized Text:</h5>
<p class="processed-text">{{ normalized_text }}</p>
</div>
<div class="meta-box">
<h5>Process Applied:</h5>
<p class="meta-text">Converted to lowercase, standardized spacing and punctuation</p>
</div>
</div>
</div>
<!-- Tokenization Card -->
<div class="tokenization-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-tags"></i>
</div>
<div class="step-title-section">
<h4 class="step-title">Tokenization</h4>
<p class="step-description">Breaks text into individual words (tokens) for word-by-word analysis</p>
</div>
<div class="card-toolbar">
<span class="badge"><i class="fas fa-hashtag me-1"></i>{{ tokenized_text|length }} tokens</span>
<button class="toolbar-btn" onclick="downloadSection('tokenized-text','tokens.txt')" title="Download"><i class="fas fa-download"></i></button>
<button class="toolbar-btn" onclick="toggleExpand(this)" title="Expand/Collapse"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="tokenized-text">
<div class="text-box">
<h5>Individual Tokens:</h5>
<div class="token-display">
{% for token in tokenized_text %}
<span class="token-item">{{ token }}</span>
{% endfor %}
</div>
</div>
</div>
</div>
<!-- Stemming & Lemmatization Card -->
<div class="stemming-lemmatization-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-cut"></i>
</div>
<div class="step-title-section">
<h4 class="step-title">Stemming & Lemmatization</h4>
<p class="step-description">Reduces words to their root forms to group similar meanings together</p>
</div>
<div class="card-toolbar">
<button class="toolbar-btn" onclick="copySectionText('stem-lemma')" title="Copy"><i class="fas fa-copy"></i></button>
<button class="toolbar-btn" onclick="downloadSection('stem-lemma','stemming_lemmatization.txt')" title="Download"><i class="fas fa-download"></i></button>
<button class="toolbar-btn" onclick="toggleExpand(this)" title="Expand/Collapse"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="stem-lemma">
<div class="text-box">
<h5>Stemmed Text:</h5>
<div class="token-display">
{% set stems = stemmed_text.split() if stemmed_text is string else (stemmed_text or []) %}
{% for stem in stems %}
<span class="token-item">{{ stem }}</span>
{% endfor %}
</div>
<small class="process-note">Stemming removes word endings to find the root (e.g., "running" → "run")</small>
</div>
<div class="text-box">
<h5>Lemmatized Text:</h5>
<div class="token-display">
{% set lemmas = lemmatized_text.split() if lemmatized_text is string else (lemmatized_text or []) %}
{% for lemma in lemmas %}
<span class="token-item">{{ lemma }}</span>
{% endfor %}
</div>
<small class="process-note">Lemmatization finds the dictionary form (e.g., "better" → "good")</small>
</div>
</div>
</div>
<!-- Word Cloud Visualization -->
<div class="wordcloud-section">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-cloud"></i>
</div>
<h4 class="step-title">Word Cloud Visualization</h4>
<div class="card-toolbar">
<button type="button" class="toolbar-btn" onclick="copySectionText('wordcloud-content')" title="Copy"><i class="fas fa-copy"></i></button>
<button type="button" class="toolbar-btn" onclick="downloadSection('wordcloud-content','wordcloud.txt')" title="Download"><i class="fas fa-download"></i></button>
<button type="button" class="toolbar-btn" onclick="toggleFullscreen(this)" title="Fullscreen"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="wordcloud-container" id="wordcloud-content">
<img src="{{ wordcloud_url }}" alt="Word Cloud" class="wordcloud-image">
<div class="wordcloud-info">
<p><i class="fas fa-info-circle me-2"></i>Word cloud generated from processed text</p>
<p><i class="fas fa-chart-bar me-2"></i>Size indicates word frequency</p>
</div>
</div>
</div>
<!-- Named Entities (NER) Card -->
<div class="ner-analysis-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-user-tag"></i>
</div>
<h4 class="step-title">Named Entities (NER)</h4>
<div class="card-toolbar">
<button type="button" class="toolbar-btn" onclick="copySectionText('ner-content')" title="Copy"><i class="fas fa-copy"></i></button>
<button type="button" class="toolbar-btn" onclick="downloadSection('ner-content','ner.txt')" title="Download"><i class="fas fa-download"></i></button>
<button type="button" class="toolbar-btn" onclick="toggleFullscreen(this)" title="Fullscreen"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="ner-content">
{% if ner %}
{% for entity, label in ner %}
<span class="entity-tag {{ label.lower() }}">
{{ entity }} <small>({{ label }})</small>
</span>
{% endfor %}
{% else %}
<p class="no-data">No named entities detected</p>
{% endif %}
</div>
</div>
<!-- Part of Speech (POS) Card -->
<div class="pos-analysis-card">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-tag"></i>
</div>
<div class="step-title-section">
<h4 class="step-title">Part of Speech (POS)</h4>
<p class="step-description">Labels each word with its grammatical role to explain sentence structure. Format: <strong>word (TAG)</strong>, e.g., <em>run (VERB)</em>, <em>happy (ADJ)</em>, <em>book (NOUN)</em>.</p>
</div>
<div class="card-toolbar">
<button type="button" class="toolbar-btn" onclick="copySectionText('pos-content')" title="Copy"><i class="fas fa-copy"></i></button>
<button type="button" class="toolbar-btn" onclick="downloadSection('pos-content','pos.txt')" title="Download"><i class="fas fa-download"></i></button>
<button type="button" class="toolbar-btn" onclick="toggleFullscreen(this)" title="Fullscreen"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="pos-content">
{% if pos %}
<div class="pos-tags">
{% for word, tag in pos %}
<span class="word-tag">
{{ word }} <small>({{ tag }})</small>
</span>
{% endfor %}
</div>
<small class="process-note">Common tags: NOUN (names/things), VERB (actions), ADJ (describing words), ADV (how/when), PRON (pronouns), ADP (prepositions), CONJ (conjunctions), DET (determiners), INTJ (interjections).</small>
{% else %}
<p class="no-data">No POS data available</p>
{% endif %}
</div>
</div>
<!-- Word-Level Sentiment Analysis (hide for emotion model) -->
{% if word_sentiment_distribution and model_type != 'emotion' %}
<div class="word-sentiment-analysis">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-chart-pie"></i>
</div>
<h4 class="step-title">Word-Level Sentiment Analysis</h4>
<div class="card-toolbar">
<button type="button" class="toolbar-btn" onclick="copySectionText('sentiment-content-full')" title="Copy"><i class="fas fa-copy"></i></button>
<button type="button" class="toolbar-btn" onclick="downloadSection('sentiment-content-full','word_sentiment.txt')" title="Download"><i class="fas fa-download"></i></button>
<button type="button" class="toolbar-btn" onclick="toggleFullscreen(this)" title="Fullscreen"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="sentiment-content-full">
<!-- Sentiment Distribution Chart -->
<div class="chart-container" style="height: 320px;">
<canvas id="sentimentChart"></canvas>
</div>
<!-- Embedded data for Sentiment chart to avoid Jinja inside JS -->
<script type="application/json" id="sentiment-data">
</script>
<script type="application/json" id="sentiment-dist"></script>
<div class="sentiment-overview">
<div class="overview-card positive">
<div class="overview-icon">
<i class="fas fa-thumbs-up"></i>
</div>
<div class="overview-content">
<span class="overview-number">{{ word_sentiment_distribution.positive }}</span>
<span class="overview-label">Positive Words</span>
</div>
</div>
<div class="overview-card neutral">
<div class="overview-icon">
<i class="fas fa-minus"></i>
</div>
<div class="overview-content">
<span class="overview-number">{{ word_sentiment_distribution.neutral }}</span>
<span class="overview-label">Neutral Words</span>
</div>
</div>
<div class="overview-card negative">
<div class="overview-icon">
<i class="fas fa-thumbs-down"></i>
</div>
<div class="overview-content">
<span class="overview-number">{{ word_sentiment_distribution.negative }}</span>
<span class="overview-label">Negative Words</span>
</div>
</div>
</div>
<div class="word-details">
{% if positive_words %}
<div class="word-group positive">
<h5><i class="fas fa-plus-circle me-2"></i>Positive Words</h5>
<div class="word-cloud">
{% for word in positive_words %}
<span class="word-tag positive">{{ word }}</span>
{% endfor %}
</div>
</div>
{% endif %}
{% if negative_words %}
<div class="word-group negative">
<h5><i class="fas fa-minus-circle me-2"></i>Negative Words</h5>
<div class="word-cloud">
{% for word in negative_words %}
<span class="word-tag negative">{{ word }}</span>
{% endfor %}
</div>
</div>
{% endif %}
{% if neutral_words %}
<div class="word-group neutral">
<h5><i class="fas fa-circle me-2"></i>Neutral Words</h5>
<div class="word-cloud">
{% for word in neutral_words %}
<span class="word-tag neutral">{{ word }}</span>
{% endfor %}
</div>
</div>
{% endif %}
</div>
</div>
</div>
{% endif %}
<!-- Emotion Analysis (show only for emotion model) -->
{% if emotion_words is defined and emotion_words and model_type == 'emotion' %}
<div class="emotion-analysis">
<div class="step-header">
<div class="step-icon">
<i class="fas fa-smile-beam"></i>
</div>
<h4 class="step-title">Emotion Analysis</h4>
<div class="card-toolbar">
<button type="button" class="toolbar-btn" onclick="copySectionText('emotion-content')" title="Copy"><i class="fas fa-copy"></i></button>
<button type="button" class="toolbar-btn" onclick="downloadSection('emotion-content','emotions.txt')" title="Download"><i class="fas fa-download"></i></button>
<button type="button" class="toolbar-btn" onclick="toggleFullscreen(this)" title="Fullscreen"><i class="fas fa-expand"></i></button>
</div>
</div>
<div class="step-content" id="emotion-content">
<div class="emotion-chart">
{% for emotion, words in emotion_words.items() %}
<div class="emotion-bar">
<div class="emotion-label">{{ emotion.title() }}</div>
<div class="emotion-bar-container">
<div class="emotion-bar-fill" style="width: {{ (words|length / (emotion_words.values()|map('length')|sum)) * 100 }}%">
<span class="emotion-count">{{ words|length }}</span>
</div>
</div>
<div class="emotion-words">
{% for word in words %}
<span class="emotion-word">{{ word }}</span>
{% endfor %}
</div>
</div>
{% endfor %}
</div>
<!-- Embedded data for Emotion chart to avoid Jinja inside JS -->
<script type="application/json" id="emotion-data">
</script>
<!-- Per-emotion cards showing all words -->
<div class="emotion-cards">
{% for emotion, words in emotion_words.items() %}
<div class="emotion-card">
<div class="emotion-card-header">
<h5>{{ emotion.title() }}</h5>
<span class="badge-count">{{ words|length }}</span>
</div>
<div class="emotion-card-body">
{% for word in words %}
<span class="emotion-word">{{ word }}</span>
{% endfor %}
</div>
</div>
{% endfor %}
</div>
</div>
</div>
{% endif %}
<!-- Action Buttons -->
<div class="results-actions">
<a href="/download" class="btn btn-primary btn-lg">
<i class="fas fa-download me-2"></i>Download Full Report
</a>
<button class="btn btn-outline-secondary btn-lg" onclick="window.print()">
<i class="fas fa-print me-2"></i>Print Results
</button>
</div>
{% endif %}
<!-- Footer -->
<div class="footer fade-in-up">
<div class="footer-text">
<i class="fas fa-code me-2"></i>
Designed and Developed by Aradhya Pavan H S
</div>
</div>
<!-- Example Text Modal -->
<div class="modal fade" id="exampleTextModal" tabindex="-1" aria-labelledby="exampleTextModalLabel" aria-hidden="true">
<div class="modal-dialog modal-xl">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title" id="exampleTextModalLabel">
<i class="fas fa-file-text me-2"></i>Sample Text for Testing
</h5>
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
</div>
<div class="modal-body">
<div class="sample-text-content">
<div style="background: var(--surface-secondary); padding: 1.5rem; border-radius: 12px; border: 1px solid var(--border-primary); font-family: 'Inter', sans-serif; line-height: 1.6; margin-bottom: 1rem; max-height: 300px; overflow-y: auto;">
<p>I woke up today feeling pretty optimistic. The sun was shining, and I thought, "This is going to be a good day" (positive). However, as soon as I checked my phone, I saw a message from my boss about a mistake in yesterday's report. I felt an immediate rush of anxiety and disappointment (negative). I quickly logged in and fixed the issue, but the weight of that mistake stuck with me throughout the morning.</p>
<p>Later, I went for a walk to clear my mind. The park was calm, and the fresh air helped me relax a bit (neutral). But while I was out, I ran into an old friend from school. We hadn't seen each other in years! Catching up with her brought back so many happy memories, and we laughed about the good times we shared (positive).</p>
<p>As the day went on, I couldn't help but feel a bit lonely after saying goodbye to her (sad). Even though our conversation was nice, it reminded me how much things have changed and how distant I feel from people lately (negative).</p>
<p>By the evening, I decided to focus on myself and enjoy a quiet dinner at home. While the day had its ups and downs, I realized that it's just part of life. Some moments are tough, but others bring joy and comfort. Overall, I'm learning to accept both (reflective).</p>
</div>
<p><i class="fas fa-info-circle me-2 text-primary"></i><strong>This sample text demonstrates:</strong> Various sentiment patterns including positive, negative, neutral, sad, and reflective emotions to showcase the AI model's comprehensive analysis capabilities.</p>
</div>
</div>
<div class="modal-footer">
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
<button type="button" class="btn btn-primary" onclick="copySampleText()">
<i class="fas fa-copy me-2"></i>Copy Text
</button>
</div>
</div>
</div>
</div>
<!-- Bootstrap JS -->
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"></script>
<!-- Chart.js for beautiful charts -->
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<!-- Documentation Modal (moved after sample modal to avoid backdrop conflicts) -->
<div class="modal fade" id="docsModal" tabindex="-1" aria-labelledby="docsModalLabel" aria-hidden="true">
<div class="modal-dialog modal-lg modal-dialog-centered">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title" id="docsModalLabel"><i class="fas fa-book me-2"></i>Application Documentation</h5>
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
</div>
<div class="modal-body">
<h6 class="mb-3"><i class="fas fa-circle-info me-2 text-primary"></i>About</h6>
<p class="mb-4">This application performs sentiment and emotion analysis on text using state-of-the-art pretrained transformer models with a clean Material design.</p>
<h6 class="mb-2"><i class="fas fa-wrench me-2 text-primary"></i>Tech Stack</h6>
<div class="table-responsive mb-4">
<table class="table docs-table align-middle">
<thead>
<tr>
<th style="width:42px"></th>
<th>Layer</th>
<th>Technology</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td class="text-center"><i class="fab fa-python text-primary"></i></td>
<td>Backend</td>
<td>Flask (Python)</td>
<td>HTTP server, routing, templating</td>
</tr>
<tr>
<td class="text-center"><i class="fas fa-robot text-primary"></i></td>
<td>NLP Models</td>
<td>Hugging Face Transformers</td>
<td>Sentiment & emotion inference</td>
</tr>
<tr>
<td class="text-center"><i class="fas fa-brain text-primary"></i></td>
<td>Preprocessing</td>
<td>spaCy, NLTK</td>
<td>NER, POS, tokenization, lemmatization</td>
</tr>
<tr>
<td class="text-center"><i class="fas fa-chart-line text-primary"></i></td>
<td>Charts</td>
<td>Chart.js</td>
<td>Word distribution visualizations</td>
</tr>
<tr>
<td class="text-center"><i class="fas fa-layer-group text-primary"></i></td>
<td>UI</td>
<td>Bootstrap 5 + Custom CSS</td>
<td>Responsive layout, modern components</td>
</tr>
</tbody>
</table>
</div>
<h6 class="mb-2"><i class="fas fa-microscope me-2 text-primary"></i>Models</h6>
<div class="list-group mb-4">
<a class="list-group-item list-group-item-action d-flex align-items-center" href="https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english" target="_blank" rel="noopener">
<i class="fas fa-square-poll-horizontal me-3 text-success"></i>
DistilBERT Sentiment – distilbert-base-uncased-finetuned-sst-2-english
</a>
<a class="list-group-item list-group-item-action d-flex align-items-center" href="https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment" target="_blank" rel="noopener">
<i class="fab fa-twitter me-3 text-info"></i>
RoBERTa (Twitter) – cardiffnlp/twitter-roberta-base-sentiment
</a>
<a class="list-group-item list-group-item-action d-flex align-items-center" href="https://huggingface.co/j-hartmann/emotion-english-distilroberta-base" target="_blank" rel="noopener">
<i class="fas fa-face-smile-beam me-3 text-warning"></i>
Emotion Model – j-hartmann/emotion-english-distilroberta-base
</a>
</div>
<h6 class="mb-2"><i class="fas fa-diagram-project me-2 text-primary"></i>How it works</h6>
<ol class="mb-0">
<li>Text is cleaned, normalized, tokenized, stemmed and lemmatized.</li>
<li>Main model predicts overall sentiment/emotions and confidence.</li>
<li>Per-word analysis derives distributions and lists by class.</li>
<li>Results are visualized and can be downloaded as a report.</li>
</ol>
</div>
<div class="modal-footer">
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
</div>
</div>
</div>
</div>
<!-- Custom JavaScript -->
<script>
// Word count functionality
const textArea = document.getElementById('inputText');
const wordCount = document.getElementById('word-count');
const wordCountText = document.getElementById('word-count-text');
const analyzeBtn = document.getElementById('analyze-btn');
const removeFileBtn = document.getElementById('removeFileBtn');
const fileInput = document.getElementById('file');
const modelSelect = document.getElementById('model_type');
// Initialize remove button as hidden
removeFileBtn.style.display = 'none';
// Ensure correct state on load (analyze route can render with pre-filled text)
function syncInteractionState() {
const words = textArea.value.trim().split(/\s+/).filter(w => w.length > 0);
if (words.length > 0) {
// Text present: disable file upload, enable analyze based on word count
fileInput.disabled = true;
analyzeBtn.disabled = words.length < 4 || words.length > 300;
} else {
// No text: allow file upload
fileInput.disabled = false;
}
}
document.addEventListener('DOMContentLoaded', syncInteractionState);
// Also run immediately for SSR-loaded content
syncInteractionState();
textArea.addEventListener('input', function() {
const words = this.value.trim().split(/\s+/).filter(word => word.length > 0);
const wordCountNum = words.length;
console.log('Word count:', wordCountNum); // Debug log
if (wordCountNum > 0) {
wordCount.style.display = 'block';
// Disable file upload when text is entered
fileInput.disabled = true;
if (wordCountNum < 4) {
wordCountText.textContent = `Text must have at least 4 words. Current: ${wordCountNum}`;
wordCount.style.background = 'var(--gradient-secondary)';
analyzeBtn.disabled = true;
} else if (wordCountNum > 300) {
wordCountText.textContent = `Text exceeds 300 word limit. Current: ${wordCountNum}`;
wordCount.style.background = 'var(--gradient-secondary)';
analyzeBtn.disabled = true;
} else {
wordCountText.textContent = `Word count: ${wordCountNum}/300`;
wordCount.style.background = 'var(--success-color)';
analyzeBtn.disabled = false;
}
} else {
wordCount.style.display = 'none';
analyzeBtn.disabled = true;
// Re-enable file upload when no text
fileInput.disabled = false;
}
console.log('Analyze button disabled:', analyzeBtn.disabled); // Debug log
});
// File upload handling
removeFileBtn.addEventListener('click', function() {
fileInput.value = '';
this.style.display = 'none';
// Re-enable text input when file is removed
textArea.disabled = false;
textArea.placeholder = "Enter your text here for sentiment analysis...";
fileInput.disabled = false;
// Hide word count and disable analyze button
wordCount.style.display = 'none';
analyzeBtn.disabled = (textArea.value.trim().split(/\s+/).filter(w=>w.length>0).length < 4);
});
fileInput.addEventListener('change', function() {
if (this.files.length > 0) {
removeFileBtn.style.display = 'inline-block';
// Disable text input when file is uploaded
textArea.disabled = true;
textArea.placeholder = "File uploaded - text input disabled";
// Enable analyze button when file is uploaded
analyzeBtn.disabled = false;
wordCount.style.display = 'block';
wordCountText.textContent = `File uploaded: ${this.files[0].name}`;
wordCount.style.background = 'var(--success-color)';
} else {
removeFileBtn.style.display = 'none';
// Re-enable text input when no file
textArea.disabled = false;
textArea.placeholder = "Enter your text here for sentiment analysis...";
wordCount.style.display = 'none';
analyzeBtn.disabled = (textArea.value.trim().split(/\s+/).filter(w=>w.length>0).length < 4);
}
});
// Enable analyze when user switches model and valid input exists
modelSelect.addEventListener('change', function(){
const words = textArea.value.trim().split(/\s+/).filter(w=>w.length>0).length;
if (fileInput.files.length > 0 || words >= 4) {
analyzeBtn.disabled = false;
}
});
// Copy sample text functionality
function copySampleText() {
const sampleText = `I woke up today feeling pretty optimistic. The sun was shining, and I thought, "This is going to be a good day" (positive). However, as soon as I checked my phone, I saw a message from my boss about a mistake in yesterday's report. I felt an immediate rush of anxiety and disappointment (negative). I quickly logged in and fixed the issue, but the weight of that mistake stuck with me throughout the morning.
Later, I went for a walk to clear my mind. The park was calm, and the fresh air helped me relax a bit (neutral). But while I was out, I ran into an old friend from school. We hadn't seen each other in years! Catching up with her brought back so many happy memories, and we laughed about the good times we shared (positive).
As the day went on, I couldn't help but feel a bit lonely after saying goodbye to her (sad). Even though our conversation was nice, it reminded me how much things have changed and how distant I feel from people lately (negative).
By the evening, I decided to focus on myself and enjoy a quiet dinner at home. While the day had its ups and downs, I realized that it's just part of life. Some moments are tough, but others bring joy and comfort. Overall, I'm learning to accept both (reflective).`;
navigator.clipboard.writeText(sampleText).then(function() {
// Also paste it into the textarea
document.getElementById('inputText').value = sampleText;
// Trigger the input event to update word count
document.getElementById('inputText').dispatchEvent(new Event('input'));
// Show success message
const copyBtn = document.querySelector('[onclick="copySampleText()"]');
const originalText = copyBtn.innerHTML;
copyBtn.innerHTML = '<i class="fas fa-check me-2"></i>Copied & Pasted!';
copyBtn.classList.add('btn-success');
// Close the modal after a short delay
setTimeout(() => {
const modal = bootstrap.Modal.getInstance(document.getElementById('exampleTextModal'));
modal.hide();
// Reset button after modal closes
setTimeout(() => {
copyBtn.innerHTML = originalText;
copyBtn.classList.remove('btn-success');
}, 500);
}, 1500);
});
}
// Add loading state to form submission
document.getElementById('sentimentForm').addEventListener('submit', function(e) {
console.log('Form submitted!');
const submitBtn = document.getElementById('analyze-btn');
submitBtn.innerHTML = '<i class="fas fa-spinner fa-spin me-2"></i>Analyzing...';
submitBtn.classList.add('loading');
submitBtn.disabled = true;
});
// Initialize tooltips
var tooltipTriggerList = [].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]'));
var tooltipList = tooltipTriggerList.map(function (tooltipTriggerEl) {
return new bootstrap.Tooltip(tooltipTriggerEl);
});
// Accordion functionality
function toggleAccordion(section) {
const content = document.getElementById(section + '-content');
const icon = document.getElementById(section + '-icon');
if (content.style.display === 'none' || content.style.display === '') {
content.style.display = 'block';
icon.classList.remove('fa-chevron-down');
icon.classList.add('fa-chevron-up');
} else {
content.style.display = 'none';
icon.classList.remove('fa-chevron-up');
icon.classList.add('fa-chevron-down');
}
}
// Initialize charts when results are available
document.addEventListener('DOMContentLoaded', function() {
// Sentiment Distribution Chart
const sentimentCtx = document.getElementById('sentimentChart');
const sentimentDataEl = document.getElementById('sentiment-data');
const sentimentDistEl = document.getElementById('sentiment-dist');
if (sentimentCtx && sentimentDataEl) {
const parsed = JSON.parse(sentimentDataEl.textContent || '{}');
const dist = sentimentDistEl ? JSON.parse(sentimentDistEl.textContent || '{}') : {};
let counts = parsed.counts || [];
const labels = parsed.labels || ['Positive','Neutral','Negative'];
// Fallback: build counts from distribution object if needed
if (!Array.isArray(counts) || counts.length !== 3) {
const positive = Number(dist.positive || 0);
const neutral = Number(dist.neutral || 0);
const negative = Number(dist.negative || 0);
counts = [positive, neutral, negative];
}
console.log('[Chart Debug] labels:', labels, 'counts:', counts, 'dist:', dist);
if (counts.some(c => typeof c === 'number') && counts.reduce((a,b)=>a+b,0) > 0) {
new Chart(sentimentCtx, {
type: 'doughnut',
data: {
labels: labels,
datasets: [{
data: counts,
backgroundColor: [
'#10b981',
'#64748b',
'#ef4444'
],
borderWidth: 4,
borderColor: '#ffffff',
hoverOffset: 8,
borderJoinStyle: 'round'
}]
},
options: {
responsive: true,
maintainAspectRatio: true,
cutout: '55%',
animation: { animateScale: true, duration: 900 },
plugins: {
legend: {
position: 'bottom',
labels: {
padding: 18,
usePointStyle: true,
boxWidth: 10
}
},
tooltip: {
callbacks: {
label: (ctx) => `${ctx.label}: ${ctx.parsed}`
}
}
}
}
});
} else {
console.warn('[Chart Debug] No data to render chart');
}
}
});
document.addEventListener('DOMContentLoaded', function() {
// Emotion Distribution Chart
const emotionCtx = document.getElementById('emotionChart');
const dataEl = document.getElementById('emotion-data');
if (emotionCtx && dataEl) {
const parsed = JSON.parse(dataEl.textContent || '{}');
const emotions = parsed.labels || [];
const counts = parsed.counts || [];
new Chart(emotionCtx, {
type: 'bar',
data: {
labels: emotions,
datasets: [{
label: 'Word Count',
data: counts,
backgroundColor: 'rgba(59, 130, 246, 0.8)',
borderColor: 'rgba(59, 130, 246, 1)',
borderWidth: 2,
borderRadius: 8
}]
},
options: {
responsive: true,
maintainAspectRatio: false,
scales: {
y: {
beginAtZero: true,
grid: {
color: 'rgba(0, 0, 0, 0.1)'
}
},
x: {
grid: {
display: false
}
}
},
plugins: {
legend: {
display: false
}
}
}
});
}
});
</script>
<script>
function copySectionText(sectionId){
const el = document.getElementById(sectionId);
if(!el) return;
const text = el.innerText || el.textContent;
navigator.clipboard.writeText(text.trim());
}
function downloadSection(sectionId, filename){
const el = document.getElementById(sectionId);
if(!el) return;
const text = (el.innerText || el.textContent).trim();
const blob = new Blob([text], {type: 'text/plain'});
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = filename;
document.body.appendChild(a);
a.click();
a.remove();
}
function toggleExpand(btn){
const card = btn.closest('.step-header').nextElementSibling;
if(!card) return;
card.classList.toggle('expanded');
const icon = btn.querySelector('i');
if(icon){ icon.classList.toggle('fa-expand'); icon.classList.toggle('fa-compress'); }
}
function toggleFullscreen(btn){
const wrapper = btn.closest('.text-cleaning-card, .normalization-card, .tokenization-card, .stemming-lemmatization-card, .wordcloud-section, .ner-analysis-card, .pos-analysis-card, .word-sentiment-analysis, .emotion-analysis');
if(!wrapper) return;
wrapper.classList.toggle('fullscreen');
const icon = btn.querySelector('i');
if(icon){ icon.classList.toggle('fa-expand'); icon.classList.toggle('fa-compress'); }
}
</script>
</body>
</html>
|