Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,242 Bytes
1b34a12 56dc12e 6c5f607 1b34a12 56dc12e 1b34a12 56dc12e 1b34a12 79136bd 1b34a12 26c0d6d 1b34a12 e59b8c6 1b34a12 4416b5c 1b34a12 4416b5c 1b34a12 4416b5c 1b34a12 4416b5c 1b34a12 827ea96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import io
import os
import sys
import gradio as gr
import numpy as np
import spaces
import torch
# from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
zero = torch.Tensor([0]).cuda()
# Set the working directory to the root directory
# root_dir = os.path.abspath("..")
# os.chdir(root_dir)
# sys.path.insert(0, root_dir)
# download dataset & weights
snapshot_download(repo_id="armeet/fastmri-tiny", repo_type="dataset", local_dir=".")
device = "cuda"
# dataset_path = "/global/homes/p/peterwg/pscratch/datasets/mri_knee_dummy"
dataset_path = "dataset"
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import fastmri
from fastmri.datasets import SliceDatasetLMDB, SliceSample
from fastmri.subsample import create_mask_for_mask_type
from models.lightning.no_varnet_module import NOVarnetModule
from models.lightning.varnet_module import VarNetModule
acceleration_to_fractions = {
1: 1,
2: 0.16,
4: 0.08,
6: 0.06,
8: 0.04,
16: 0.02,
32: 0.01,
}
def create_mask_fn(center_fraction, acceleration):
mask_fn = create_mask_for_mask_type(
"equispaced_fraction",
[center_fraction],
[acceleration],
)
return mask_fn
mask_4x = create_mask_fn(acceleration_to_fractions[4], 4)
mask_6x = create_mask_fn(acceleration_to_fractions[6], 6)
mask_8x = create_mask_fn(acceleration_to_fractions[8], 8)
mask_16x = create_mask_fn(acceleration_to_fractions[16], 16)
val_dataset_4x = SliceDatasetLMDB(
"knee",
partition="val",
mask_fns=[mask_4x],
complex=False,
root=dataset_path,
crop_shape=(320, 320),
coils=15,
)
val_dataset_6x = SliceDatasetLMDB(
"knee",
partition="val",
mask_fns=[mask_6x],
complex=False,
root=dataset_path,
crop_shape=(320, 320),
coils=15,
)
val_dataset_8x = SliceDatasetLMDB(
"knee",
partition="val",
mask_fns=[mask_8x],
complex=False,
root=dataset_path,
crop_shape=(320, 320),
coils=15,
)
val_dataset_16x = SliceDatasetLMDB(
"knee",
partition="val",
mask_fns=[mask_16x],
complex=False,
root=dataset_path,
crop_shape=(320, 320),
coils=15,
)
vn = VarNetModule.load_from_checkpoint(
"vn.ckpt",
)
no = NOVarnetModule.load_from_checkpoint(
"no.ckpt",
)
no.eval()
vn.eval()
bright_samples = [42, 69, 80, 137, 139, 226, 229]
def v(x):
return x.detach().cpu().numpy().squeeze()
def viz(x, cmap="gray", vmin=0, vmax=1):
processed_data = v(x)
fig, ax = plt.subplots()
ax.imshow(processed_data, cmap=cmap, vmin=vmin, vmax=vmax)
ax.axis("off") # Turn off axes
fig.subplots_adjust(left=0, right=1, top=1, bottom=0) # Adjust margins
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
buf.seek(0) # Rewind the buffer to the beginning
plt.show()
try:
img = Image.open(buf)
img_array = np.array(img)
except Exception as e:
print(f"Error converting image buffer to NumPy array: {e}")
img_array = None
finally:
plt.close(fig)
buf.close()
return img_array
@spaces.GPU
def forward(model, idx, rate):
if rate == 4:
dataset = val_dataset_4x
elif rate == 6:
dataset = val_dataset_6x
elif rate == 8:
dataset = val_dataset_8x
elif rate == 16:
dataset = val_dataset_16x
else:
raise ValueError("Invalid rate")
sample = dataset[idx]
mask, k, target = (
sample.mask.to(device),
sample.masked_kspace.to(device),
sample.target.to(device),
)
pred = model(k.unsqueeze(0), mask.unsqueeze(0), None)
return mask, k, target, pred[0]
@spaces.GPU
def update_interface(sample_id, sample_rate):
n = [None] * 6
if sample_id is None or sample_rate is None or sample_id not in bright_samples:
return n
mask, k, target, pred_vn = forward(vn, sample_id, sample_rate)
_, _, _, pred_no = forward(no, sample_id, sample_rate)
k = viz(mask[0, :, :, 0], cmap="gray", vmin=0, vmax=1)
target_res = viz(target, cmap="gray", vmin=None, vmax=None)
pred_no_res = viz(pred_no, cmap="gray", vmin=None, vmax=None)
pred_vn_res = viz(pred_vn, cmap="gray", vmin=None, vmax=None)
diff_no_res = viz(torch.abs(pred_no - target), cmap=None, vmin=None, vmax=None)
diff_vn_res = viz(torch.abs(pred_vn - target), cmap=None, vmin=None, vmax=None)
return k, target_res, pred_no_res, pred_vn_res, diff_no_res, diff_vn_res
with gr.Blocks(theme=gr.themes.Monochrome(), fill_width=True) as demo:
gr.Markdown(
"# A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [CPVR 2025]"
)
gr.Markdown("""
> Armeet Singh Jatyani, Jiayun Wang, Aditi Chandrashekar, Zihui Wu, Miguel Liu-Schiaffini, Bahareh Tolooshams, Anima Anandkumar
""")
gr.Markdown(
"[](https://arxiv.org/abs/2410.16290)"
)
gr.Markdown(
"[](https://armeet.ca/nomri)"
)
gr.Markdown(
"This demo showcases the performance of our unified model for compressed sensing MRI across different acceleration rates."
)
gr.Markdown(
"We recommend trying samples with a 16x acceleration pattern first, as reconstruction differences are easy to observe."
)
gr.Markdown(
"At lower acceleration rates (4x or 6x), the difference in reconstruction quality is difficult to discern. At higher acceleration rates, look for blurring, repeating, or distortion, especially near edges and in backgrounds. We provide difference images to help identify reconstruction errors."
)
with gr.Row():
dropdown_sample = gr.Dropdown(
choices=bright_samples,
label="Select a Sample",
info="Choose one of the available samples.",
filterable=False,
value=229,
)
with gr.Row():
dropdown_rate = gr.Radio(
choices=[16, 8, 6, 4],
value=16,
label="Select an Acceleration Rate",
info="Ex: 4x means the model is trained to reconstruct from 4x undersampled k-space data",
# filterable=False,
)
with gr.Row():
with gr.Column():
gr.Label("Undersampling Mask")
k = gr.Image(label=None, interactive=False)
with gr.Column():
gr.Label("Ground Truth")
target = gr.Image(label=None, interactive=False)
with gr.Column():
gr.Label("NO (ours)")
pred_no = gr.Image(label="Reconstruction (ours)", interactive=False)
with gr.Column():
gr.Label("VN (existing)")
pred_vn = gr.Image(label="Reconstruction (existing)", interactive=False)
with gr.Row():
with gr.Column():
pass
with gr.Column():
pass
with gr.Column():
diff_no = gr.Image(label="| Recon - GT | (ours)", interactive=False)
with gr.Column():
diff_vn = gr.Image(label="| Recon - GT | (existing)", interactive=False)
gr.Markdown("""
```
@inproceedings{jatyani2025nomri,
author = {Armeet Singh Jatyani* and Jiayun Wang* and Aditi Chandrashekar and Zihui Wu and Miguel Liu-Schiaffini and Bahareh Tolooshams and Anima Anandkumar},
title = {A Unified Model for Compressed Sensing MRI Across Undersampling Patterns},
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR) Proceedings},
abbr = {CVPR},
year = {2025}
}
```
""")
update_inputs = [dropdown_sample, dropdown_rate]
update_outputs = [k, target, pred_no, pred_vn, diff_no, diff_vn]
dropdown_sample.change(
fn=update_interface, inputs=update_inputs, outputs=update_outputs
)
dropdown_rate.change(
fn=update_interface, inputs=update_inputs, outputs=update_outputs
)
if __name__ == "__main__":
# demo.launch(share=True)
demo.launch()
|