Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,570 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import random
import xml.etree.ElementTree as etree
from pathlib import Path
from typing import (
Any,
Callable,
Dict,
List,
Literal,
NamedTuple,
Optional,
Sequence,
Tuple,
Union,
)
import h5py
import lmdb
import numpy as np
import torch
import yaml
import sigpy as sp
import pandas as pd
import fastmri
import fastmri.transforms as T
class RawSample(NamedTuple):
fname: Path
slice_num: int
metadata: Dict[str, Any]
class SliceSample(NamedTuple):
masked_kspace: torch.Tensor
mask: torch.Tensor
num_low_frequencies: int
target: torch.Tensor
max_value: float
# attrs: Dict[str, Any]
fname: str
slice_num: int
class SliceSampleMVUE(NamedTuple):
masked_kspace: torch.Tensor
mask: torch.Tensor
num_low_frequencies: int
target: torch.Tensor
rss: torch.Tensor
max_value: float
# attrs: Dict[str, Any]
fname: str
slice_num: int
def et_query(
root: etree.Element,
qlist: Sequence[str],
namespace: str = "http://www.ismrm.org/ISMRMRD",
) -> str:
"""
Query an XML document using ElementTree.
This function allows querying an XML document by specifying a root and a list of nested queries.
It supports optional XML namespaces.
Parameters
----------
root : ElementTree.Element
The root element of the XML to search through.
qlist : list of str
A list of strings for nested searches, e.g., ["Encoding", "matrixSize"].
namespace : str, optional
An optional XML namespace to prepend to the query (default is None).
Returns
-------
str
The retrieved data as a string.
"""
s = "."
prefix = "ismrmrd_namespace"
ns = {prefix: namespace}
for el in qlist:
s = s + f"//{prefix}:{el}"
value = root.find(s, ns)
if value is None:
raise RuntimeError("Element not found")
return str(value.text)
class SliceDataset(torch.utils.data.Dataset):
"""
A simplified PyTorch Dataset that provides access to multicoil MR image
slices from the fastMRI dataset.
"""
def __init__(
self,
# root: Optional[Path | str],
body_part: Literal["knee", "brain"],
partition: Literal["train", "val", "test"],
mask_fns: Optional[List[Callable]] = None,
sample_rate: float = 1.0,
complex: bool = False,
crop_shape: Tuple[int, int] = (320, 320),
slug: str = "",
contrast: Optional[Literal["T1", "T2"]] = None,
coils: Optional[int] = None,
):
"""
Initializes the fastMRI multi-coil challenge dataset.
Samples are individual 2D slices taken from k-space volume data.
Parameters
----------
body_part : {'knee', 'brain'}
The body part to analyze.
partition : {'train', 'val', 'test'}
The data partition type.
mask_fns : list of callable, optional
A list of masking functions to apply to samples.
If multiple are given, a mask is randomly chosen for each sample.
sample_rate : float, optional
Fraction of data to sample, by default 1.0.
complex : bool, optional
Whether the $k$-space data should return complex-valued, by default False.
If True, kspace values will be complex.
If False, kspace values will be real (shape, 2).
crop_shape : tuple of two ints, optional
The shape to center crop the k-space data, by default (320, 320).
slug : string
dataset slug name
contrast : {'T1', 'T2'}
If partition is brain, the contrast of images to use.
"""
with open("fastmri.yaml", "r") as file:
config = yaml.safe_load(file)
self.contrast = contrast
self.slug = slug
self.partition = partition
self.body_part = body_part
self.root = (
Path(config.get(f"{body_part}_path")) / f"multicoil_{partition}"
)
self.mask_fns = mask_fns
self.sample_rate = sample_rate
self.raw_samples: List[RawSample] = self._load_samples()
self.complex = complex
self.crop_shape = crop_shape
self.coils = coils
def _load_samples(self):
# Gather all files in the root directory
if self.body_part == "brain" and self.contrast:
files = list(self.root.glob(f"*{self.contrast}*.h5"))
else:
files = list(self.root.glob("*.h5"))
raw_samples = []
# Load and process metadata from each file
for fname in sorted(files):
with h5py.File(fname, "r") as hf:
metadata, num_slices = self._retrieve_metadata(fname)
# Collect samples for each slice, discard first c slices, and last c slices
c = 6
for slice_num in range(num_slices):
if c <= slice_num <= num_slices - c - 1:
raw_samples.append(
RawSample(fname, slice_num, metadata)
)
# Subsample if desired
if self.sample_rate < 1.0:
raw_samples = random.sample(
raw_samples, int(len(raw_samples) * self.sample_rate)
)
return raw_samples
def _retrieve_metadata(self, fname):
with h5py.File(fname, "r") as hf:
et_root = etree.fromstring(hf["ismrmrd_header"][()])
enc = ["encoding", "encodedSpace", "matrixSize"]
enc_size = (
int(et_query(et_root, enc + ["x"])),
int(et_query(et_root, enc + ["y"])),
int(et_query(et_root, enc + ["z"])),
)
rec = ["encoding", "reconSpace", "matrixSize"]
recon_size = (
int(et_query(et_root, rec + ["x"])),
int(et_query(et_root, rec + ["y"])),
int(et_query(et_root, rec + ["z"])),
)
lims = ["encoding", "encodingLimits", "kspace_encoding_step_1"]
enc_limits_center = int(et_query(et_root, lims + ["center"]))
enc_limits_max = int(et_query(et_root, lims + ["maximum"])) + 1
padding_left = enc_size[1] // 2 - enc_limits_center
padding_right = padding_left + enc_limits_max
num_slices = hf["kspace"].shape[0]
metadata = {
"padding_left": padding_left,
"padding_right": padding_right,
"encoding_size": enc_size,
"recon_size": recon_size,
**hf.attrs,
}
return metadata, num_slices
def __len__(self):
return len(self.raw_samples)
def __getitem__(self, idx) -> SliceSample:
try:
raw_sample: RawSample = self.raw_samples[idx]
fname, slice_num, metadata = raw_sample
# load kspace and target
with h5py.File(fname, "r") as hf:
kspace = torch.tensor(hf["kspace"][()][slice_num])
if not self.complex:
kspace = torch.view_as_real(kspace)
if self.coils:
if kspace.shape[0] < self.coils:
return None
kspace = kspace[: self.coils, :, :, :]
target_key = (
"reconstruction_rss"
if self.partition in ["train", "val"]
else "reconstruction_esc"
)
target = hf.get(target_key, None)
if target is not None:
target = torch.tensor(target[()][slice_num])
if self.body_part == "brain":
target = T.center_crop(target, self.crop_shape)
# center crop to enable collating for batching
if self.complex:
# if complex, crop across dims: -2 and -1 (last 2)
raise NotImplementedError("Not implemented for complex native")
else:
# crop in image space, to not lose high-frequency information
image = fastmri.ifft2c(kspace)
image_cropped = T.complex_center_crop(image, self.crop_shape)
kspace = fastmri.fft2c(image_cropped)
# apply transform mask if there is one
if self.mask_fns:
# choose a random mask
mask_fn = random.choice(self.mask_fns)
kspace, mask, num_low_frequencies = T.apply_mask(
kspace,
mask_fn,
# seed=seed,
)
mask = mask.bool()
else:
mask = torch.ones_like(kspace, dtype=torch.bool)
num_low_frequencies = 0
sample = SliceSample(
kspace,
mask,
num_low_frequencies,
target,
metadata["max"],
fname.name,
slice_num,
)
return sample
except:
return None
class SliceDatasetLMDB(torch.utils.data.Dataset):
"""
A simplified PyTorch Dataset that provides access to multicoil MR image
slices from the fastMRI dataset. Loads from LMDB saved samples.
"""
def __init__(
self,
body_part: Literal["knee", "brain"],
partition: Literal["train", "val", "test"],
root: Optional[Path | str] = None,
mask_fns: Optional[List[Callable]] = None,
sample_rate: float = 1.0,
complex: bool = False,
crop_shape: Tuple[int, int] = (320, 320),
slug: str = "",
coils: int = 15,
):
"""
Initializes the fastMRI multi-coil challenge dataset.
Samples are individual 2D slices taken from k-space volume data.
Parameters
----------
body_part : {'knee', 'brain'}
The body part to analyze.
root : Path or str, optional
Root to lmdb dataset. If not provided, the root is automatically
loaded directly from fastmri.yaml config
partition : {'train', 'val', 'test'}
The data partition type.
mask_fns : list of callable, optional
A list of masking functions to apply to samples.
If multiple are given, a mask is randomly chosen for each sample.
sample_rate : float, optional
Fraction of data to sample, by default 1.0.
complex : bool, optional
Whether the $k$-space data should return complex-valued, by default False.
If True, kspace values will be complex.
If False, kspace values will be real (shape, 2).
crop_shape : tuple of two ints, optional
The shape to center crop the k-space data, by default (320, 320).
slug : string
dataset slug name
"""
# set attrs
self.coils = coils
self.slug = slug
self.partition = partition
self.mask_fns = mask_fns
self.sample_rate = sample_rate
self.complex = complex
self.crop_shape = crop_shape
# load lmdb info
if root:
if isinstance(root, str):
root = Path(root)
assert root.exists(), "Provided root doesn't exist."
self.root = root
else:
with open("fastmri.yaml", "r") as file:
config = yaml.safe_load(file)
self.root = Path(config["lmdb"][f"{body_part}_{partition}_path"])
self.meta = np.load(self.root / "meta.npy")
self.kspace_env = lmdb.open(
str(self.root / "kspace"),
readonly=True,
lock=False,
create=False,
)
self.kspace_txn = self.kspace_env.begin(write=False)
self.rss_env = lmdb.open(
str(self.root / "rss"),
readonly=True,
lock=False,
create=False,
)
self.rss_txn = self.rss_env.begin(write=False)
self.length = self.kspace_txn.stat()["entries"]
def __len__(self):
return int(self.sample_rate * self.length)
def __getitem__(self, idx) -> SliceSample:
idx_key = str(idx).encode("utf-8")
# load sample data
kspace = torch.from_numpy(
np.frombuffer(self.kspace_txn.get(idx_key), dtype=np.float32)
.reshape(self.coils, 320, 320, 2)
.copy()
)
rss = torch.from_numpy(
np.frombuffer(self.rss_txn.get(idx_key), dtype=np.float32)
.reshape(320, 320)
.copy()
)
# crop in image space, to not lose high-frequency information
if self.crop_shape and self.crop_shape != (320, 320):
image = fastmri.ifft2c(kspace)
image_cropped = T.complex_center_crop(image, self.crop_shape)
kspace = fastmri.fft2c(image_cropped)
rss = T.center_crop(rss, self.crop_shape)
# load and apply mask
if self.mask_fns:
# choose a random mask
mask_fn = random.choice(self.mask_fns)
kspace, mask, num_low_frequencies = T.apply_mask(
kspace,
mask_fn, # type: ignore
)
mask = mask.bool()
else:
mask = torch.ones_like(kspace, dtype=torch.bool)
num_low_frequencies = 0
# load metadata
fname, slice_num, max_value = self.meta[idx]
fname = str(fname)
slice_num = int(slice_num)
max_value = float(max_value)
return SliceSample(
kspace,
mask,
num_low_frequencies,
rss,
max_value,
fname,
slice_num,
)
class SliceDatasetLMDB_MVUE(torch.utils.data.Dataset):
"""
Loads from LMDB brain saved samples.
Modified to have MVUE targets
"""
def __init__(
self,
root: Path | str,
mask_fns: Optional[List[Callable]] = None,
sample_rate: float = 1.0,
crop_shape: Tuple[int, int] = (320, 320),
slug: str = "",
coils: int = 15,
):
# set attrs
self.coils = coils
self.slug = slug
self.mask_fns = mask_fns
self.sample_rate = sample_rate
self.complex = complex
self.crop_shape = crop_shape
# load lmdb info
if isinstance(root, str):
root = Path(root)
assert root.exists(), "Provided root doesn't exist."
self.root = root
self.meta = np.load(self.root / "meta.npy")
self.mapping = pd.read_csv("brain_mvue_map.csv")
self.kspace_env = lmdb.open(
str(self.root / "kspace"),
readonly=True,
lock=False,
create=False,
)
self.kspace_txn = self.kspace_env.begin(write=False)
self.rss_env = lmdb.open(
str(self.root / "rss"),
readonly=True,
lock=False,
create=False,
)
self.rss_txn = self.rss_env.begin(write=False)
# ray mvue dataset
self.mvue_env = lmdb.open(
str("/pscratch/sd/p/peterwg/datasets/raytemp"),
readonly=True,
lock=False,
create=False,
)
self.mvue_txn = self.mvue_env.begin(write=False)
self.length = len(self.mapping)
# self.length = self.kspace_txn.stat()["entries"]
def __len__(self):
return int(self.sample_rate * self.length)
def __getitem__(self, idx) -> SliceSampleMVUE:
# ray's index: 0-n
ray_idx = idx
# my index: lookup(ray index)
idx = int(self.mapping.iloc[ray_idx].my_index)
ray_idx_key = str(ray_idx).encode("utf-8")
idx_key = str(idx).encode("utf-8")
# load sample data
kspace = torch.from_numpy(
np.frombuffer(self.kspace_txn.get(idx_key), dtype=np.float32)
.reshape(self.coils, 320, 320, 2)
.copy()
)
# mvue_target = np.sum(
# sp.ifft(kspace, axes=(-1, -2)) * np.conj(s_maps), axis=1
# ) / np.sqrt(np.sum(np.square(np.abs(s_maps)), axis=1))
rss = torch.from_numpy(
np.frombuffer(self.rss_txn.get(idx_key), dtype=np.float32)
.reshape(320, 320)
.copy()
)
# load mvue from ray dataset
mvue = torch.from_numpy(
np.frombuffer(self.mvue_txn.get(ray_idx_key), dtype=np.complex64)
.reshape(320, 320)
.copy()
)
mvue = torch.abs(mvue)
# crop in image space, to not lose high-frequency information
if self.crop_shape and self.crop_shape != (320, 320):
image = fastmri.ifft2c(kspace)
image_cropped = T.complex_center_crop(image, self.crop_shape)
kspace = fastmri.fft2c(image_cropped)
rss = T.center_crop(rss, self.crop_shape)
# load and apply mask
if self.mask_fns:
# choose a random mask
mask_fn = random.choice(self.mask_fns)
kspace, mask, num_low_frequencies = T.apply_mask(
kspace,
mask_fn, # type: ignore
)
mask = mask.bool()
else:
mask = torch.ones_like(kspace, dtype=torch.bool)
num_low_frequencies = 0
# load metadata
fname, slice_num, max_value = self.meta[idx]
fname = str(fname)
slice_num = int(slice_num)
max_value = float(max_value)
return SliceSampleMVUE(
kspace,
mask,
num_low_frequencies,
mvue,
rss,
max_value,
fname,
slice_num,
)
# d = SliceDatasetLMDB("knee", "val", None, 1, True, (320, 320), "testdataset")
# print(len(d))
# breakpoint()
# ds = SuperSliceDatasetLMDB(
# "brain", # body_part
# "val", # partition
# None, # root
# None, # mask_fns
# 1.0, # sample_rate
# True, # complex
# (320, 320), # crop_shape
# "test-superres", # slug
# coils=16, # coils
# )
# breakpoint()
# d = SliceDataset("brain", "train", None, contrast="T2")
# # TESTING MVUE
# d = SliceDatasetLMDB_MVUE("/pscratch/sd/p/peterwg/datasets/mri_brain_train_lmdb", coils=16)
# x = d[0]
# d = SliceDatasetLMDB_MVUE("/pscratch/sd/p/peterwg/datasets/raytemp/", coils=16) |