File size: 5,009 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""

import argparse
import pathlib
from argparse import ArgumentParser
from typing import Optional

import h5py
import numpy as np
from runstats import Statistics
from skimage.metrics import peak_signal_noise_ratio, structural_similarity

from fastmri import transforms


def mse(gt: np.ndarray, pred: np.ndarray) -> np.ndarray:
    """Compute Mean Squared Error (MSE)"""
    return np.mean((gt - pred) ** 2)


def nmse(gt: np.ndarray, pred: np.ndarray) -> np.ndarray:
    """Compute Normalized Mean Squared Error (NMSE)"""
    return np.array(np.linalg.norm(gt - pred) ** 2 / np.linalg.norm(gt) ** 2)


def psnr(
    gt: np.ndarray, pred: np.ndarray, maxval: Optional[float] = None
) -> np.ndarray:
    """Compute Peak Signal to Noise Ratio metric (PSNR)"""
    if maxval is None:
        maxval = gt.max()
    return peak_signal_noise_ratio(gt, pred, data_range=maxval)


def ssim(
    gt: np.ndarray, pred: np.ndarray, maxval: Optional[float] = None
) -> np.ndarray:
    """Compute Structural Similarity Index Metric (SSIM)"""
    if not gt.ndim == 3:
        raise ValueError("Unexpected number of dimensions in ground truth.")
    if not gt.ndim == pred.ndim:
        raise ValueError("Ground truth dimensions does not match pred.")

    maxval = gt.max() if maxval is None else maxval

    ssim = np.array([0])
    for slice_num in range(gt.shape[0]):
        ssim = ssim + structural_similarity(
            gt[slice_num], pred[slice_num], data_range=maxval
        )

    return ssim / gt.shape[0]


METRIC_FUNCS = dict(
    MSE=mse,
    NMSE=nmse,
    PSNR=psnr,
    SSIM=ssim,
)


class Metrics:
    """
    Maintains running statistics for a given collection of metrics.
    """

    def __init__(self, metric_funcs):
        """
        Parameters
        ----------
        metric_funcs : dict
            A dictionary where the keys are metric names (as strings) and the values
            are Python functions for evaluating the corresponding metrics.
        """

        self.metrics = {metric: Statistics() for metric in metric_funcs}

    def push(self, target, recons):
        for metric, func in METRIC_FUNCS.items():
            self.metrics[metric].push(func(target, recons))

    def means(self):
        return {metric: stat.mean() for metric, stat in self.metrics.items()}

    def stddevs(self):
        return {metric: stat.stddev() for metric, stat in self.metrics.items()}

    def __repr__(self):
        means = self.means()
        stddevs = self.stddevs()
        metric_names = sorted(list(means))
        return " ".join(
            f"{name} = {means[name]:.4g} +/- {2 * stddevs[name]:.4g}"
            for name in metric_names
        )


def evaluate(args, recons_key):
    metrics = Metrics(METRIC_FUNCS)

    for tgt_file in args.target_path.iterdir():
        with h5py.File(tgt_file, "r") as target, h5py.File(
            args.predictions_path / tgt_file.name, "r"
        ) as recons:
            if args.acquisition and args.acquisition != target.attrs["acquisition"]:
                continue

            if args.acceleration and target.attrs["acceleration"] != args.acceleration:
                continue

            target = target[recons_key][()]
            recons = recons["reconstruction"][()]
            target = transforms.center_crop(
                target, (target.shape[-1], target.shape[-1])
            )
            recons = transforms.center_crop(
                recons, (target.shape[-1], target.shape[-1])
            )
            metrics.push(target, recons)

    return metrics


if __name__ == "__main__":
    parser = ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "--target-path",
        type=pathlib.Path,
        required=True,
        help="Path to the ground truth data",
    )
    parser.add_argument(
        "--predictions-path",
        type=pathlib.Path,
        required=True,
        help="Path to reconstructions",
    )
    parser.add_argument(
        "--challenge",
        choices=["singlecoil", "multicoil"],
        required=True,
        help="Which challenge",
    )
    parser.add_argument("--acceleration", type=int, default=None)
    parser.add_argument(
        "--acquisition",
        choices=[
            "CORPD_FBK",
            "CORPDFS_FBK",
            "AXT1",
            "AXT1PRE",
            "AXT1POST",
            "AXT2",
            "AXFLAIR",
        ],
        default=None,
        help=(
            "If set, only volumes of the specified acquisition type are used "
            "for evaluation. By default, all volumes are included."
        ),
    )
    args = parser.parse_args()

    recons_key = (
        "reconstruction_rss" if args.challenge == "multicoil" else "reconstruction_esc"
    )
    metrics = evaluate(args, recons_key)
    print(metrics)