File size: 5,189 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""

from typing import List, Optional

import torch
import torch.fft


def fft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
    """
    Apply a centered 2-dimensional Fast Fourier Transform (FFT).

    Parameters
    ----------
    data : torch.Tensor
        Complex-valued input data containing at least 3 dimensions.
        Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2.
        All other dimensions are assumed to be batch dimensions.
    norm : str
        Normalization mode. Refer to `torch.fft.fft` for details on normalization options.

    Returns
    -------
    torch.Tensor
        The FFT of the input data.
    """

    if not data.shape[-1] == 2:
        raise ValueError("Tensor does not have separate complex dim.")

    data = ifftshift(data, dim=[-3, -2])
    data = torch.view_as_real(
        torch.fft.fftn(  # type: ignore
            torch.view_as_complex(data), dim=(-2, -1), norm=norm
        )
    )
    data = fftshift(data, dim=[-3, -2])

    return data


def ifft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
    """
    Apply a centered 2-dimensional Inverse Fast Fourier Transform (IFFT).

    Parameters
    ----------
    data : torch.Tensor
        Complex-valued input data containing at least 3 dimensions.
        Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2.
        All other dimensions are assumed to be batch dimensions.
    norm : str
        Normalization mode. Refer to `torch.fft.ifft` for details on normalization options.

    Returns
    -------
    torch.Tensor
        The IFFT of the input data.
    """

    if not data.shape[-1] == 2:
        raise ValueError("Tensor does not have separate complex dim.")

    data = ifftshift(data, dim=[-3, -2])
    data = torch.view_as_real(
        torch.fft.ifftn(  # type: ignore
            torch.view_as_complex(data), dim=(-2, -1), norm=norm
        )
    )
    data = fftshift(data, dim=[-3, -2])

    return data


# Helper functions


def roll_one_dim(x: torch.Tensor, shift: int, dim: int) -> torch.Tensor:
    """
    Roll a PyTorch tensor along a specified dimension.

    This function is similar to `torch.roll` but operates on a single dimension.

    Parameters
    ----------
    x : torch.Tensor
        The input tensor to be rolled.
    shift : int
        Amount to roll.
    dim : int
        The dimension along which to roll the tensor.

    Returns
    -------
    torch.Tensor
        A tensor with the same shape as `x`, but rolled along the specified dimension.
    """

    shift = shift % x.size(dim)
    if shift == 0:
        return x

    left = x.narrow(dim, 0, x.size(dim) - shift)
    right = x.narrow(dim, x.size(dim) - shift, shift)

    return torch.cat((right, left), dim=dim)


def roll(
    x: torch.Tensor,
    shift: List[int],
    dim: List[int],
) -> torch.Tensor:
    """
    Similar to np.roll but applies to PyTorch Tensors.

    Parameters
    ----------
    x : torch.Tensor
        A PyTorch tensor.
    shift : int
        Amount to roll.
    dim : int
        Which dimension to roll.

    Returns
    -------
    torch.Tensor
        Rolled version of x.
    """

    if len(shift) != len(dim):
        raise ValueError("len(shift) must match len(dim)")

    for s, d in zip(shift, dim):
        x = roll_one_dim(x, s, d)

    return x


def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
    """
    Similar to np.fft.fftshift but applies to PyTorch Tensors.

    Parameters
    ----------
    x : torch.Tensor
        A PyTorch tensor.
    dim : list of int, optional
        Which dimension to apply fftshift. If None, the shift is applied to all dimensions (default is None).

    Returns
    -------
    torch.Tensor
        fftshifted version of x.
    """
    if dim is None:
        # this weird code is necessary for torch.jit.script typing
        dim = [0] * (x.dim())
        for i in range(1, x.dim()):
            dim[i] = i

    # also necessary for torch.jit.script
    shift = [0] * len(dim)
    for i, dim_num in enumerate(dim):
        shift[i] = x.shape[dim_num] // 2

    return roll(x, shift, dim)


def ifftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
    """
    Similar to np.fft.ifftshift but applies to PyTorch Tensors.

    Parameters
    ----------
    x : torch.Tensor
        A PyTorch tensor.
    dim : list of int, optional
        Which dimension to apply ifftshift. If None, the shift is applied to all dimensions (default is None).

    Returns
    -------
    torch.Tensor
        ifftshifted version of x.
    """
    if dim is None:
        # this weird code is necessary for torch.jit.script typing
        dim = [0] * (x.dim())
        for i in range(1, x.dim()):
            dim[i] = i

    # also necessary for torch.jit.script
    shift = [0] * len(dim)
    for i, dim_num in enumerate(dim):
        shift[i] = (x.shape[dim_num] + 1) // 2

    return roll(x, shift, dim)