Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,189 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
from typing import List, Optional
import torch
import torch.fft
def fft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply a centered 2-dimensional Fast Fourier Transform (FFT).
Parameters
----------
data : torch.Tensor
Complex-valued input data containing at least 3 dimensions.
Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2.
All other dimensions are assumed to be batch dimensions.
norm : str
Normalization mode. Refer to `torch.fft.fft` for details on normalization options.
Returns
-------
torch.Tensor
The FFT of the input data.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
data = ifftshift(data, dim=[-3, -2])
data = torch.view_as_real(
torch.fft.fftn( # type: ignore
torch.view_as_complex(data), dim=(-2, -1), norm=norm
)
)
data = fftshift(data, dim=[-3, -2])
return data
def ifft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor:
"""
Apply a centered 2-dimensional Inverse Fast Fourier Transform (IFFT).
Parameters
----------
data : torch.Tensor
Complex-valued input data containing at least 3 dimensions.
Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2.
All other dimensions are assumed to be batch dimensions.
norm : str
Normalization mode. Refer to `torch.fft.ifft` for details on normalization options.
Returns
-------
torch.Tensor
The IFFT of the input data.
"""
if not data.shape[-1] == 2:
raise ValueError("Tensor does not have separate complex dim.")
data = ifftshift(data, dim=[-3, -2])
data = torch.view_as_real(
torch.fft.ifftn( # type: ignore
torch.view_as_complex(data), dim=(-2, -1), norm=norm
)
)
data = fftshift(data, dim=[-3, -2])
return data
# Helper functions
def roll_one_dim(x: torch.Tensor, shift: int, dim: int) -> torch.Tensor:
"""
Roll a PyTorch tensor along a specified dimension.
This function is similar to `torch.roll` but operates on a single dimension.
Parameters
----------
x : torch.Tensor
The input tensor to be rolled.
shift : int
Amount to roll.
dim : int
The dimension along which to roll the tensor.
Returns
-------
torch.Tensor
A tensor with the same shape as `x`, but rolled along the specified dimension.
"""
shift = shift % x.size(dim)
if shift == 0:
return x
left = x.narrow(dim, 0, x.size(dim) - shift)
right = x.narrow(dim, x.size(dim) - shift, shift)
return torch.cat((right, left), dim=dim)
def roll(
x: torch.Tensor,
shift: List[int],
dim: List[int],
) -> torch.Tensor:
"""
Similar to np.roll but applies to PyTorch Tensors.
Parameters
----------
x : torch.Tensor
A PyTorch tensor.
shift : int
Amount to roll.
dim : int
Which dimension to roll.
Returns
-------
torch.Tensor
Rolled version of x.
"""
if len(shift) != len(dim):
raise ValueError("len(shift) must match len(dim)")
for s, d in zip(shift, dim):
x = roll_one_dim(x, s, d)
return x
def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
"""
Similar to np.fft.fftshift but applies to PyTorch Tensors.
Parameters
----------
x : torch.Tensor
A PyTorch tensor.
dim : list of int, optional
Which dimension to apply fftshift. If None, the shift is applied to all dimensions (default is None).
Returns
-------
torch.Tensor
fftshifted version of x.
"""
if dim is None:
# this weird code is necessary for torch.jit.script typing
dim = [0] * (x.dim())
for i in range(1, x.dim()):
dim[i] = i
# also necessary for torch.jit.script
shift = [0] * len(dim)
for i, dim_num in enumerate(dim):
shift[i] = x.shape[dim_num] // 2
return roll(x, shift, dim)
def ifftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
"""
Similar to np.fft.ifftshift but applies to PyTorch Tensors.
Parameters
----------
x : torch.Tensor
A PyTorch tensor.
dim : list of int, optional
Which dimension to apply ifftshift. If None, the shift is applied to all dimensions (default is None).
Returns
-------
torch.Tensor
ifftshifted version of x.
"""
if dim is None:
# this weird code is necessary for torch.jit.script typing
dim = [0] * (x.dim())
for i in range(1, x.dim()):
dim[i] = i
# also necessary for torch.jit.script
shift = [0] * len(dim)
for i, dim_num in enumerate(dim):
shift[i] = (x.shape[dim_num] + 1) // 2
return roll(x, shift, dim)
|