Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,271 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import os
from typing import Dict, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.distributions as D
from networkx import center
from sigpy.mri import poisson, radial, spiral
class MaskFunc:
"""
An object for GRAPPA-style sampling masks.
This crates a sampling mask that densely samples the center while
subsampling outer k-space regions based on the undersampling factor.
When called, ``MaskFunc`` uses internal functions create mask by 1)
creating a mask for the k-space center, 2) create a mask outside of the
k-space center, and 3) combining them into a total mask. The internals are
handled by ``sample_mask``, which calls ``calculate_center_mask`` for (1)
and ``calculate_acceleration_mask`` for (2). The combination is executed
in the ``MaskFunc`` ``__call__`` function.
If you would like to implement a new mask, simply subclass ``MaskFunc``
and overwrite the ``sample_mask`` logic. See examples in ``RandomMaskFunc``
and ``EquispacedMaskFunc``.
"""
def __init__(
self,
center_fractions: Sequence[float],
accelerations: Sequence[int],
allow_any_combination: bool = False,
seed: Optional[int] = None,
):
"""
Args:
center_fractions: Fraction of low-frequency columns to be retained.
If multiple values are provided, then one of these numbers is
chosen uniformly each time.
accelerations: Amount of under-sampling. This should have the same
length as center_fractions. If multiple values are provided,
then one of these is chosen uniformly each time.
allow_any_combination: Whether to allow cross combinations of
elements from ``center_fractions`` and ``accelerations``.
seed: Seed for starting the internal random number generator of the
``MaskFunc``.
"""
if (
len(center_fractions) != len(accelerations)
and not allow_any_combination
):
raise ValueError(
"Number of center fractions should match number of"
" accelerations if allow_any_combination is False."
)
self.center_fractions = center_fractions
self.accelerations = accelerations
self.allow_any_combination = allow_any_combination
self.rng = np.random.RandomState(seed)
def __call__(
self,
shape: Sequence[int],
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Tuple[torch.Tensor, int]:
"""
Sample and return a k-space mask.
Args:
shape: Shape of k-space.
offset: Offset from 0 to begin mask (for equispaced masks). If no
offset is given, then one is selected randomly.
seed: Seed for random number generator for reproducibility.
Returns:
A 2-tuple containing 1) the k-space mask and 2) the number of
center frequency lines.
"""
if len(shape) < 3:
raise ValueError("Shape should have 3 or more dimensions")
center_mask, accel_mask, num_low_frequencies = self.sample_mask(
shape, offset
)
# combine masks together
return torch.max(center_mask, accel_mask), num_low_frequencies
def sample_mask(
self,
shape: Sequence[int],
offset: Optional[int],
) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Sample a new k-space mask.
This function samples and returns two components of a k-space mask: 1)
the center mask (e.g., for sensitivity map calculation) and 2) the
acceleration mask (for the edge of k-space). Both of these masks, as
well as the integer of low frequency samples, are returned.
Args:
shape: Shape of the k-space to subsample.
offset: Offset from 0 to begin mask (for equispaced masks).
Returns:
A 3-tuple contaiing 1) the mask for the center of k-space, 2) the
mask for the high frequencies of k-space, and 3) the integer count
of low frequency samples.
"""
num_cols = shape[-2]
center_fraction, acceleration = self.choose_acceleration()
num_low_frequencies = round(num_cols * center_fraction)
center_mask = self.reshape_mask(
self.calculate_center_mask(shape, num_low_frequencies), shape
)
acceleration_mask = self.reshape_mask(
self.calculate_acceleration_mask(
num_cols, acceleration, offset, num_low_frequencies
),
shape,
)
return center_mask, acceleration_mask, num_low_frequencies
def reshape_mask(
self, mask: torch.Tensor, shape: Sequence[int]
) -> torch.Tensor:
"""Reshape mask to desired output shape."""
if len(mask.shape) == 1:
mask = torch.tensor(mask)
mask_num_freqs = len(mask)
mask = mask.reshape(1, 1, mask_num_freqs, 1)
mask = mask.expand(shape)
return mask.expand(shape)
def reshape_mask_old(
self, mask: np.ndarray, shape: Sequence[int]
) -> torch.Tensor:
"""Reshape mask to desired output shape."""
num_cols = shape[-2]
mask_shape = [1 for s in shape]
mask_shape[-2] = num_cols
return torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32))
def calculate_acceleration_mask(
self,
num_cols: int,
acceleration: int,
offset: Optional[int],
num_low_frequencies: int,
) -> np.ndarray:
"""
Produce mask for non-central acceleration lines.
Args:
num_cols: Number of columns of k-space (2D subsampling).
acceleration: Desired acceleration rate.
offset: Offset from 0 to begin masking (for equispaced masks).
num_low_frequencies: Integer count of low-frequency lines sampled.
Returns:
A mask for the high spatial frequencies of k-space.
"""
raise NotImplementedError
def calculate_center_mask(
self, shape: Sequence[int], num_low_freqs: int
) -> np.ndarray:
"""
Build center mask based on number of low frequencies.
Args:
shape: Shape of k-space to mask.
num_low_freqs: Number of low-frequency lines to sample.
Returns:
A mask for hte low spatial frequencies of k-space.
"""
num_cols = shape[-2]
mask = np.zeros(num_cols, dtype=np.float32)
pad = (num_cols - num_low_freqs + 1) // 2
mask[pad : pad + num_low_freqs] = 1
assert mask.sum() == num_low_freqs
return mask
def choose_acceleration(self):
"""Choose acceleration based on class parameters."""
if self.allow_any_combination:
return self.rng.choice(self.center_fractions), self.rng.choice(
self.accelerations
)
else:
choice = self.rng.randint(len(self.center_fractions))
return self.center_fractions[choice], self.accelerations[choice]
class RandomMaskFunc(MaskFunc):
"""
Creates a random sub-sampling mask of a given shape.
The mask selects a subset of columns from the input k-space data. If the
k-space data has N columns, the mask picks out:
1. N_low_freqs = (N * center_fraction) columns in the center
corresponding to low-frequencies.
2. The other columns are selected uniformly at random with a
probability equal to: prob = (N / acceleration - N_low_freqs) /
(N - N_low_freqs). This ensures that the expected number of columns
selected is equal to (N / acceleration).
It is possible to use multiple center_fractions and accelerations, in which
case one possible (center_fraction, acceleration) is chosen uniformly at
random each time the ``RandomMaskFunc`` object is called.
For example, if accelerations = [4, 8] and center_fractions = [0.08, 0.04],
then there is a 50% probability that 4-fold acceleration with 8% center
fraction is selected and a 50% probability that 8-fold acceleration with 4%
center fraction is selected.
"""
def calculate_acceleration_mask(
self,
num_cols: int,
acceleration: int,
offset: Optional[int],
num_low_frequencies: int,
) -> np.ndarray:
prob = (num_cols / acceleration - num_low_frequencies) / (
num_cols - num_low_frequencies
)
return self.rng.uniform(size=num_cols) < prob
class EquiSpacedMaskFunc(MaskFunc):
"""
Sample data with equally-spaced k-space lines.
The lines are spaced exactly evenly, as is done in standard GRAPPA-style
acquisitions. This means that with a densely-sampled center,
``acceleration`` will be greater than the true acceleration rate.
"""
def calculate_acceleration_mask(
self,
num_cols: int,
acceleration: int,
offset: Optional[int],
num_low_frequencies: int,
) -> np.ndarray:
"""
Produce mask for non-central acceleration lines.
Args:
num_cols: Number of columns of k-space (2D subsampling).
acceleration: Desired acceleration rate.
offset: Offset from 0 to begin masking. If no offset is specified,
then one is selected randomly.
num_low_frequencies: Not used.
Returns:
A mask for the high spatial frequencies of k-space.
"""
if offset is None:
offset = self.rng.randint(0, high=round(acceleration))
mask = np.zeros(num_cols, dtype=np.float32)
mask[offset::acceleration] = 1
return mask
class EquispacedMaskFractionFunc(MaskFunc):
"""
Equispaced mask with approximate acceleration matching.
The mask selects a subset of columns from the input k-space data. If the
k-space data has N columns, the mask picks out:
1. N_low_freqs = (N * center_fraction) columns in the center
corresponding to low-frequencies.
2. The other columns are selected with equal spacing at a proportion
that reaches the desired acceleration rate taking into consideration
the number of low frequencies. This ensures that the expected number
of columns selected is equal to (N / acceleration)
It is possible to use multiple center_fractions and accelerations, in which
case one possible (center_fraction, acceleration) is chosen uniformly at
random each time the EquispacedMaskFunc object is called.
Note that this function may not give equispaced samples (documented in
https://github.com/facebookresearch/fastMRI/issues/54), which will require
modifications to standard GRAPPA approaches. Nonetheless, this aspect of
the function has been preserved to match the public multicoil data.
"""
def calculate_acceleration_mask(
self,
num_cols: int,
acceleration: int,
offset: Optional[int],
num_low_frequencies: int,
) -> np.ndarray:
"""
Produce mask for non-central acceleration lines.
Args:
num_cols: Number of columns of k-space (2D subsampling).
acceleration: Desired acceleration rate.
offset: Offset from 0 to begin masking. If no offset is specified,
then one is selected randomly.
num_low_frequencies: Number of low frequencies. Used to adjust mask
to exactly match the target acceleration.
Returns:
A mask for the high spatial frequencies of k-space.
"""
# determine acceleration rate by adjusting for the number of low frequencies
adjusted_accel = (acceleration * (num_low_frequencies - num_cols)) / (
num_low_frequencies * acceleration - num_cols
)
if offset is None:
offset = self.rng.randint(0, high=round(adjusted_accel))
mask = np.zeros(num_cols, dtype=np.float32)
accel_samples = np.arange(offset, num_cols - 1, adjusted_accel)
accel_samples = np.around(accel_samples).astype(np.uint)
mask[accel_samples] = 1.0
return mask
class MagicMaskFunc(MaskFunc):
"""
Masking function for exploiting conjugate symmetry via offset-sampling.
This function applies the mask described in the following paper:
Defazio, A. (2019). Offset Sampling Improves Deep Learning based
Accelerated MRI Reconstructions by Exploiting Symmetry. arXiv preprint,
arXiv:1912.01101.
It is essentially an equispaced mask with an offset for the opposite site
of k-space. Since MRI images often exhibit approximate conjugate k-space
symmetry, this mask is generally more efficient than a standard equispaced
mask.
Similarly to ``EquispacedMaskFunc``, this mask will usually undereshoot the
target acceleration rate.
"""
def calculate_acceleration_mask(
self,
num_cols: int,
acceleration: int,
offset: Optional[int],
num_low_frequencies: int,
) -> np.ndarray:
"""
Produce mask for non-central acceleration lines.
Args:
num_cols: Number of columns of k-space (2D subsampling).
acceleration: Desired acceleration rate.
offset: Offset from 0 to begin masking. If no offset is specified,
then one is selected randomly.
num_low_frequencies: Not used.
Returns:
A mask for the high spatial frequencies of k-space.
"""
if offset is None:
offset = self.rng.randint(0, high=acceleration)
if offset % 2 == 0:
offset_pos = offset + 1
offset_neg = offset + 2
else:
offset_pos = offset - 1 + 3
offset_neg = offset - 1 + 0
poslen = (num_cols + 1) // 2
neglen = num_cols - (num_cols + 1) // 2
mask_positive = np.zeros(poslen, dtype=np.float32)
mask_negative = np.zeros(neglen, dtype=np.float32)
mask_positive[offset_pos::acceleration] = 1
mask_negative[offset_neg::acceleration] = 1
mask_negative = np.flip(mask_negative)
mask = np.concatenate((mask_positive, mask_negative))
return np.fft.fftshift(mask) # shift mask and return
class MagicMaskFractionFunc(MagicMaskFunc):
"""
Masking function for exploiting conjugate symmetry via offset-sampling.
This function applies the mask described in the following paper:
Defazio, A. (2019). Offset Sampling Improves Deep Learning based
Accelerated MRI Reconstructions by Exploiting Symmetry. arXiv preprint,
arXiv:1912.01101.
It is essentially an equispaced mask with an offset for the opposite site
of k-space. Since MRI images often exhibit approximate conjugate k-space
symmetry, this mask is generally more efficient than a standard equispaced
mask.
Similarly to ``EquispacedMaskFractionFunc``, this method exactly matches
the target acceleration by adjusting the offsets.
"""
def sample_mask(
self,
shape: Sequence[int],
offset: Optional[int],
) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Sample a new k-space mask.
This function samples and returns two components of a k-space mask: 1)
the center mask (e.g., for sensitivity map calculation) and 2) the
acceleration mask (for the edge of k-space). Both of these masks, as
well as the integer of low frequency samples, are returned.
Args:
shape: Shape of the k-space to subsample.
offset: Offset from 0 to begin mask (for equispaced masks).
Returns:
A 3-tuple contaiing 1) the mask for the center of k-space, 2) the
mask for the high frequencies of k-space, and 3) the integer count
of low frequency samples.
"""
num_cols = shape[-2]
fraction_low_freqs, acceleration = self.choose_acceleration()
num_cols = shape[-2]
num_low_frequencies = round(num_cols * fraction_low_freqs)
# bound the number of low frequencies between 1 and target columns
target_columns_to_sample = round(num_cols / acceleration)
num_low_frequencies = max(
min(num_low_frequencies, target_columns_to_sample), 1
)
# adjust acceleration rate based on target acceleration.
adjusted_target_columns_to_sample = (
target_columns_to_sample - num_low_frequencies
)
adjusted_acceleration = 0
if adjusted_target_columns_to_sample > 0:
adjusted_acceleration = round(
num_cols / adjusted_target_columns_to_sample
)
center_mask = self.reshape_mask(
self.calculate_center_mask(shape, num_low_frequencies), shape
)
accel_mask = self.reshape_mask(
self.calculate_acceleration_mask(
num_cols, adjusted_acceleration, offset, num_low_frequencies
),
shape,
)
return center_mask, accel_mask, num_low_frequencies
class Gaussian2DMaskFunc(MaskFunc):
"""Gaussian 2D Masking
Args:
MaskFunc (_type_): _description_
"""
def __init__(
self,
accelerations: Sequence[int],
stds: Sequence[float],
seed: Optional[int] = None,
):
"""initialize Gaussian 2D Mask
Args:
accelerations (Sequence[int]): list of acceleration factors, when
generating a mask, an acceleration factor from this list will be chosen
stds (Sequence[float]): list of torch.Normal scale (~std) to choose from
seed (Optional[int], optional): Seed for selecting mask parameters. Defaults to None.
"""
self.rng = np.random.RandomState(seed)
self.accelerations = accelerations
self.stds = stds
def __call__(
self,
shape: Sequence[int],
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int]:
if len(shape) < 3:
raise ValueError("Shape should have 3 or more dimensions")
acceleration = self.rng.choice(self.accelerations)
std = self.rng.choice(self.stds)
x, y = shape[-3], shape[-2]
mean_x = x // 2
mean_y = y // 2
num_samples_collected = 0
dist = D.Normal(
loc=torch.tensor([mean_x, mean_y], dtype=torch.float32),
scale=std,
)
N = (
int(1 / acceleration * x * y) + 10000
) # add constant or won't reach desired subsampling rate
sample_x, sample_y = (
torch.zeros(N, dtype=torch.int),
torch.zeros(N, dtype=torch.int),
)
while num_samples_collected < N:
samples = dist.sample((N,)) # type: ignore
valid_samples = (
(samples[:, 0] >= 0)
& (samples[:, 0] < x)
& (samples[:, 1] >= 0)
& (samples[:, 1] < y)
)
valid_x = samples[valid_samples, 0].int()
valid_y = samples[valid_samples, 1].int()
num_to_take = min(N - num_samples_collected, valid_x.size(0))
sample_x[
num_samples_collected : num_samples_collected + num_to_take
] = valid_x[:num_to_take]
sample_y[
num_samples_collected : num_samples_collected + num_to_take
] = valid_y[:num_to_take]
num_samples_collected += num_to_take
mask = torch.zeros((x, y))
mask[sample_x, sample_y] = 1.0
# broadcasting mask (x, y) --> (N, x, y, C) C=2, N=batch_size
mask = mask.unsqueeze(-1) # (x, y, 1)
mask = mask.unsqueeze(0) # (1, x, y, 1)
mask = mask.expand((1, mask.shape[1], mask.shape[2], 2)).clone()
# num_low_freqs doesn't make sense so just return std (a number)
# returning None doesn't work since we can't stack for multiple batches
return mask, std
class Poisson2DMaskFunc(MaskFunc):
"""
Variable Density Poisson Disk Sampling
https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.poisson.html#sigpy.mri.poisson
"""
def __init__(
self,
accelerations: Sequence[int],
stds: None,
seed: Optional[int] = None,
use_cache: bool = True,
):
"""initialize VDPD (Poisson) mask
Args:
accelerations (Sequence[int]): list of acceleration factors to
choose from
stds: Dummy param. Do not pass value. Defaults to None.
seed (Optional[int], optional): Seed for selecting mask params.
Defaults to None.
"""
self.rng = np.random.RandomState(seed)
self.accelerations = accelerations
self.use_cache = use_cache
if use_cache:
self.cache: Dict[int, np.ndarray] = dict()
for acc in accelerations:
# assert os.path.exists(
# f"fastmri/poisson_cache/poisson_{acc}x.npy"
# )
# self.cache[acc] = np.load(
# f"fastmri/poisson_cache/poisson_{acc}x.npy"
# )
self.cache[acc] = np.load(
f"/global/homes/p/peterwg/more/medical-imaging/fastmri/poisson_cache/poisson_{acc}x.npy"
)
def __call__(
self,
shape: Sequence[int],
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int]:
if self.use_cache:
acceleration = self.rng.choice(self.accelerations)
return torch.from_numpy(self.cache[acceleration]), 1.0 # type: ignore
if len(shape) < 3:
raise ValueError("Shape should have 3 or more dimensions")
acceleration = self.rng.choice(self.accelerations)
x, y = shape[-3], shape[-2]
mask = poisson(img_shape=(x, y), accel=acceleration, dtype=np.float32)
mask = torch.from_numpy(mask)
# broadcasting mask (x, y) --> (N, x, y, C) C=2, N=batch_size
mask = mask.unsqueeze(-1) # (x, y, 1e
mask = mask.unsqueeze(0) # (1, x, y, 1)
mask = mask.expand((1, mask.shape[1], mask.shape[2], 2)).clone()
# num low freqs doesn't make sense here, so we return arbitrary value 1.0
return mask, 100.0
class Radial2DMaskFunc(MaskFunc):
"""
Radial trajectory MRI masking method.
https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.radial.html#sigpy.mri.radial
"""
def __init__(
self,
accelerations: Sequence[int],
arms: Optional[Sequence[int]],
seed: Optional[int] = None,
):
"""
initialize Radial mask
Args:
accelerations (Sequence[int]): list of acceleration factors to
choose from
arms: Number of radial arms.
seed (Optional[int], optional): Seed for selecting mask params.
Defaults to None.
"""
self.rng = np.random.RandomState(seed)
self.accelerations = accelerations
self.arms = arms
def __call__(
self,
shape: Sequence[int],
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int]:
if len(shape) < 3:
raise ValueError("Shape should have 3 or more dimensions")
acceleration = self.rng.choice(self.accelerations)
x, y = shape[-3], shape[-2]
npoints = int(x * y * (1 / acceleration))
if self.arms:
arms = self.rng.choice(self.arms)
else:
points_per_arm = x // 3
arms = npoints // points_per_arm
# calculate radial parameters to satisfy acceleration factor
ntr = arms # num radial lines
nro = npoints // arms # num points on each radial line
ndim = 2 # 2D
# gen trajectory w/ shape (ntr, nro, ndim)
traj = radial(
coord_shape=[ntr, nro, ndim],
img_shape=(x, y),
golden=True,
dtype=int,
)
mask = torch.zeros(x, y, dtype=torch.float32)
x_coords = traj[..., 0].flatten() + (x // 2)
y_coords = traj[..., 1].flatten() + (y // 2)
mask[x_coords, y_coords] = 1.0
# broadcasting mask (x, y) --> (N, x, y, C) C=2, N=batch_size
mask = mask.unsqueeze(-1) # (x, y, 1)
mask = mask.unsqueeze(0) # (1, x, y, 1)
mask = mask.expand((1, mask.shape[1], mask.shape[2], 2)).clone()
# num low freqs doesn't make sense here, so we return arbitrary value 1.0
return mask, 100.0
class Spiral2DMaskFunc(MaskFunc):
"""
Spiral trajectory MRI masking method.
https://sigpy.readthedocs.io/en/latest/generated/sigpy.mri.spiral.html#sigpy.mri.spiral
"""
def __init__(
self,
accelerations: Sequence[int],
arms: Sequence[int],
seed: Optional[int] = None,
):
"""
initialize Radial mask
Args:
accelerations (Sequence[int]): list of acceleration factors to
choose from
arms: Number of radial arms.
seed (Optional[int], optional): Seed for selecting mask params.
Defaults to None.
"""
self.rng = np.random.RandomState(seed)
self.accelerations = accelerations
self.arms = arms
def __call__(
self,
shape: Sequence[int],
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int]:
# TODO: implement
raise (NotImplementedError("Spiral2D not implemented"))
if len(shape) < 3:
raise ValueError("Shape should have 3 or more dimensions")
acceleration = self.rng.choice(self.accelerations)
arms = self.rng.choice(self.arms)
x, y = shape[-3], shape[-2]
# calculate radial parameters to satisfy acceleration factor
npoints = int(x * y * (1 / acceleration))
# gen trajectory w/ shape (ntr, nro, ndim)
traj = spiral(
N=npoints,
img_shape=(x, y),
golden=True,
dtype=int,
)
mask = torch.zeros(x, y, dtype=float)
x_coords = traj[..., 0].flatten() + (x // 2)
y_coords = traj[..., 1].flatten() + (y // 2)
mask[x_coords, y_coords] = 1.0
# broadcasting mask (x, y) --> (N, x, y, C) C=2, N=batch_size
mask = mask.unsqueeze(-1) # (x, y, 1)
mask = mask.unsqueeze(0) # (1, x, y, 1)
mask = mask.expand((1, mask.shape[1], mask.shape[2], 2)).clone()
# num low freqs doesn't make sense here, so we return arbitrary value 1.0
return mask, 100.0
def create_mask_for_mask_type(
mask_type_str: str,
center_fractions: Optional[Sequence],
accelerations: Sequence[int],
) -> MaskFunc:
"""
Creates a mask of the specified type.
Args:
center_fractions: What fraction of the center of k-space to include.
accelerations: What accelerations to apply.
Returns:
A mask func for the target mask type.
"""
if mask_type_str == "random":
return RandomMaskFunc(center_fractions, accelerations)
elif mask_type_str == "equispaced":
return EquiSpacedMaskFunc(center_fractions, accelerations)
elif mask_type_str == "equispaced_fraction":
return EquispacedMaskFractionFunc(center_fractions, accelerations)
elif mask_type_str == "magic":
return MagicMaskFunc(center_fractions, accelerations)
elif mask_type_str == "magic_fraction":
return MagicMaskFractionFunc(center_fractions, accelerations)
elif mask_type_str == "gaussian_2d":
return Gaussian2DMaskFunc(
stds=center_fractions,
accelerations=accelerations,
)
elif mask_type_str == "poisson_2d":
return Poisson2DMaskFunc(
accelerations=accelerations,
stds=None,
)
elif mask_type_str == "radial_2d":
return Radial2DMaskFunc(
accelerations=accelerations,
arms=(
[int(arm) for arm in center_fractions]
if center_fractions
else None
),
)
elif mask_type_str == "spiral_2d":
raise NotImplementedError("spiral_2d not implemented")
else:
raise ValueError(f"{mask_type_str} not supported")
|