Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,220 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import random
from typing import Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import torch
import fastmri
from .subsample import MaskFunc
def to_tensor(data: np.ndarray) -> torch.Tensor:
"""
Convert numpy array to PyTorch tensor.
For complex arrays, the real and imaginary parts are stacked along the last
dimension.
Args:
data: Input numpy array.
Returns:
PyTorch version of data.
"""
if np.iscomplexobj(data):
data = np.stack((data.real, data.imag), axis=-1)
return torch.from_numpy(data)
def tensor_to_complex_np(data: torch.Tensor) -> np.ndarray:
"""
Converts a complex torch tensor to numpy array.
Args:
data: Input data to be converted to numpy.
Returns:
Complex numpy version of data.
"""
return torch.view_as_complex(data).numpy()
def apply_mask(
data: torch.Tensor,
mask_func: MaskFunc,
offset: Optional[int] = None,
seed: Optional[Union[int, Tuple[int, ...]]] = None,
padding: Optional[Sequence[int]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Subsample given k-space by multiplying with a mask.
Args:
data: The input k-space data. This should have at least 3 dimensions,
where dimensions -3 and -2 are the spatial dimensions, and the
final dimension has size 2 (for complex values).
mask_func: A function that takes a shape (tuple of ints) and a random
number seed and returns a mask.
seed: Seed for the random number generator.
padding: Padding value to apply for mask.
Returns:
tuple containing:
masked data: Subsampled k-space data.
mask: The generated mask.
num_low_frequencies: The number of low-resolution frequency samples
in the mask.
"""
shape = (1,) * len(data.shape[:-3]) + tuple(data.shape[-3:])
mask, num_low_frequencies = mask_func(shape, offset, seed)
if padding is not None:
mask[..., : padding[0], :] = 0
mask[..., padding[1] :, :] = (
0 # padding value inclusive on right of zeros
)
masked_data = data * mask + 0.0 # the + 0.0 removes the sign of the zeros
return masked_data, mask, num_low_frequencies
def mask_center(x: torch.Tensor, mask_from: int, mask_to: int) -> torch.Tensor:
"""
Initializes a mask with the center filled in.
Args:
mask_from: Part of center to start filling.
mask_to: Part of center to end filling.
Returns:
A mask with the center filled.
"""
mask = torch.zeros_like(x)
mask[:, :, :, mask_from:mask_to] = x[:, :, :, mask_from:mask_to]
return mask
def batched_mask_center(
x: torch.Tensor, mask_from: torch.Tensor, mask_to: torch.Tensor
) -> torch.Tensor:
"""
Initializes a mask with the center filled in.
Can operate with different masks for each batch element.
Args:
mask_from: Part of center to start filling.
mask_to: Part of center to end filling.
Returns:
A mask with the center filled.
"""
if not mask_from.shape == mask_to.shape:
raise ValueError("mask_from and mask_to must match shapes.")
if not mask_from.ndim == 1:
raise ValueError("mask_from and mask_to must have 1 dimension.")
if not mask_from.shape[0] == 1:
if (not x.shape[0] == mask_from.shape[0]) or (
not x.shape[0] == mask_to.shape[0]
):
raise ValueError(
"mask_from and mask_to must have batch_size length."
)
if mask_from.shape[0] == 1:
mask = mask_center(x, int(mask_from), int(mask_to))
else:
mask = torch.zeros_like(x)
for i, (start, end) in enumerate(zip(mask_from, mask_to)):
mask[i, :, :, start:end] = x[i, :, :, start:end]
return mask
def center_crop(data: torch.Tensor, shape: Tuple[int, int]) -> torch.Tensor:
"""
Apply a center crop to the input real image or batch of real images.
Args:
data: The input tensor to be center cropped. It should
have at least 2 dimensions and the cropping is applied along the
last two dimensions.
shape: The output shape. The shape should be smaller
than the corresponding dimensions of data.
Returns:
The center cropped image.
"""
if not (0 < shape[0] <= data.shape[-2] and 0 < shape[1] <= data.shape[-1]):
raise ValueError("Invalid shapes.")
w_from = (data.shape[-2] - shape[0]) // 2
h_from = (data.shape[-1] - shape[1]) // 2
w_to = w_from + shape[0]
h_to = h_from + shape[1]
return data[..., w_from:w_to, h_from:h_to]
def complex_center_crop(
data: torch.Tensor, shape: Tuple[int, int]
) -> torch.Tensor:
"""
Apply a center crop to the input image or batch of complex images.
Args:
data: The complex input tensor to be center cropped. It should have at
least 3 dimensions and the cropping is applied along dimensions -3
and -2 and the last dimensions should have a size of 2.
shape: The output shape. The shape should be smaller than the
corresponding dimensions of data.
Returns:
The center cropped image
"""
if not (0 < shape[0] <= data.shape[-3] and 0 < shape[1] <= data.shape[-2]):
raise ValueError("Invalid shapes.")
w_from = (data.shape[-3] - shape[0]) // 2
h_from = (data.shape[-2] - shape[1]) // 2
w_to = w_from + shape[0]
h_to = h_from + shape[1]
return data[..., w_from:w_to, h_from:h_to, :]
def center_crop_to_smallest(
x: torch.Tensor, y: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply a center crop on the larger image to the size of the smaller.
The minimum is taken over dim=-1 and dim=-2. If x is smaller than y at
dim=-1 and y is smaller than x at dim=-2, then the returned dimension will
be a mixture of the two.
Args:
x: The first image.
y: The second image.
Returns:
tuple of tensors x and y, each cropped to the minimim size.
"""
smallest_width = min(x.shape[-1], y.shape[-1])
smallest_height = min(x.shape[-2], y.shape[-2])
x = center_crop(x, (smallest_height, smallest_width))
y = center_crop(y, (smallest_height, smallest_width))
return x, y
def normalize(
data: torch.Tensor,
mean: Union[float, torch.Tensor],
stddev: Union[float, torch.Tensor],
eps: Union[float, torch.Tensor] = 0.0,
) -> torch.Tensor:
"""
Normalize the given tensor.
Applies the formula (data - mean) / (stddev + eps).
Args:
data: Input data to be normalized.
mean: Mean value.
stddev: Standard deviation.
eps: Added to stddev to prevent dividing by zero.
Returns:
Normalized tensor.
"""
return (data - mean) / (stddev + eps)
def normalize_instance(
data: torch.Tensor, eps: Union[float, torch.Tensor] = 0.0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Normalize the given tensor with instance norm/
Applies the formula (data - mean) / (stddev + eps), where mean and stddev
are computed from the data itself.
Args:
data: Input data to be normalized
eps: Added to stddev to prevent dividing by zero.
Returns:
torch.Tensor: Normalized tensor
"""
mean = data.mean()
std = data.std()
return normalize(data, mean, std, eps), mean, std
class UnetSample(NamedTuple):
"""
A subsampled image for U-Net reconstruction.
Args:
image: Subsampled image after inverse FFT.
target: The target image (if applicable).
mean: Per-channel mean values used for normalization.
std: Per-channel standard deviations used for normalization.
fname: File name.
slice_num: The slice index.
max_value: Maximum image value.
"""
image: torch.Tensor
target: torch.Tensor
mean: torch.Tensor
std: torch.Tensor
fname: str
slice_num: int
max_value: float
class UnetDataTransform:
"""
Data Transformer for training U-Net models.
"""
def __init__(
self,
which_challenge: str,
mask_func: Optional[MaskFunc] = None,
use_seed: bool = True,
):
"""
Args:
which_challenge: Challenge from ("singlecoil", "multicoil").
mask_func: Optional; A function that can create a mask of
appropriate shape.
use_seed: If true, this class computes a pseudo random number
generator seed from the filename. This ensures that the same
mask is used for all the slices of a given volume every time.
"""
if which_challenge not in ("singlecoil", "multicoil"):
raise ValueError(
"Challenge should either be 'singlecoil' or 'multicoil'"
)
self.mask_func = mask_func
self.which_challenge = which_challenge
self.use_seed = use_seed
def __call__(
self,
kspace: np.ndarray,
mask: np.ndarray,
target: np.ndarray,
attrs: Dict,
fname: str,
slice_num: int,
) -> Tuple[
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, str, int, float
]:
"""
Args:
kspace: Input k-space of shape (num_coils, rows, cols) for
multi-coil data or (rows, cols) for single coil data.
mask: Mask from the test dataset.
target: Target image.
attrs: Acquisition related information stored in the HDF5 object.
fname: File name.
slice_num: Serial number of the slice.
Returns:
A tuple containing, zero-filled input image, the reconstruction
target, the mean used for normalization, the standard deviations
used for normalization, the filename, and the slice number.
"""
kspace_torch = to_tensor(kspace)
# check for max value
max_value = attrs["max"] if "max" in attrs.keys() else 0.0
# apply mask
if self.mask_func:
seed = None if not self.use_seed else tuple(map(ord, fname))
# we only need first element, which is k-space after masking
masked_kspace = apply_mask(kspace_torch, self.mask_func, seed=seed)[
0
]
else:
masked_kspace = kspace_torch
# inverse Fourier transform to get zero filled solution
image = fastmri.ifft2c(masked_kspace)
# crop input to correct size
if target is not None:
crop_size = (target.shape[-2], target.shape[-1])
else:
crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])
# check for FLAIR 203
if image.shape[-2] < crop_size[1]:
crop_size = (image.shape[-2], image.shape[-2])
image = complex_center_crop(image, crop_size)
# absolute value
image = fastmri.complex_abs(image)
# apply Root-Sum-of-Squares if multicoil data
if self.which_challenge == "multicoil":
image = fastmri.rss(image)
# normalize input
image, mean, std = normalize_instance(image, eps=1e-11)
image = image.clamp(-6, 6)
# normalize target
if target is not None:
target_torch = to_tensor(target)
target_torch = center_crop(target_torch, crop_size)
target_torch = normalize(target_torch, mean, std, eps=1e-11)
target_torch = target_torch.clamp(-6, 6)
else:
target_torch = torch.Tensor([0])
return UnetSample(
image=image,
target=target_torch,
mean=mean,
std=std,
fname=fname,
slice_num=slice_num,
max_value=max_value,
)
class VarNetSample(NamedTuple):
"""
A sample of masked k-space for variational network reconstruction.
Args:
masked_kspace: k-space after applying sampling mask.
mask: The applied sampling mask.
num_low_frequencies: The number of samples for the densely-sampled
center.
target: The target image (if applicable).
fname: File name.
slice_num: The slice index.
max_value: Maximum image value.
crop_size: The size to crop the final image.
"""
masked_kspace: torch.Tensor
mask: torch.Tensor
num_low_frequencies: Optional[int]
target: torch.Tensor
fname: str
slice_num: int
max_value: float
crop_size: Tuple[int, int]
class VarNetDataTransform:
"""
Data Transformer for training VarNet models.
"""
def __init__(
self, mask_func: Optional[MaskFunc] = None, use_seed: bool = True
):
"""
Args:
mask_func: Optional; A function that can create a mask of
appropriate shape. Defaults to None.
use_seed: If True, this class computes a pseudo random number
generator seed from the filename. This ensures that the same
mask is used for all the slices of a given volume every time.
"""
self.mask_func = mask_func
self.use_seed = use_seed
def __call__(
self,
kspace: np.ndarray,
mask: np.ndarray,
target: Optional[np.ndarray],
attrs: Dict,
fname: str,
slice_num: int,
) -> VarNetSample:
"""
Args:
kspace: Input k-space of shape (num_coils, rows, cols) for
multi-coil data.
mask: Mask from the test dataset.
target: Target image.
attrs: Acquisition related information stored in the HDF5 object.
fname: File name.
slice_num: Serial number of the slice.
Returns:
A VarNetSample with the masked k-space, sampling mask, target
image, the filename, the slice number, the maximum image value
(from target), the target crop size, and the number of low
frequency lines sampled.
"""
if target is not None:
target_torch = to_tensor(target)
max_value = attrs["max"]
else:
target_torch = torch.tensor(0)
max_value = 0.0
kspace_torch = to_tensor(kspace)
seed = None if not self.use_seed else tuple(map(ord, fname))
acq_start = attrs["padding_left"]
acq_end = attrs["padding_right"]
crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])
if self.mask_func is not None:
masked_kspace, mask_torch, num_low_frequencies = apply_mask(
kspace_torch,
self.mask_func,
seed=seed,
padding=(acq_start, acq_end),
)
sample = VarNetSample(
masked_kspace=masked_kspace,
mask=mask_torch.to(torch.bool),
num_low_frequencies=num_low_frequencies,
target=target_torch,
fname=fname,
slice_num=slice_num,
max_value=max_value,
crop_size=crop_size,
)
else:
masked_kspace = kspace_torch
shape = np.array(kspace_torch.shape)
num_cols = shape[-2]
shape[:-3] = 1
mask_shape = [1] * len(shape)
mask_shape[-2] = num_cols
mask_torch = torch.from_numpy(
mask.reshape(*mask_shape).astype(np.float32)
)
mask_torch = mask_torch.reshape(*mask_shape)
mask_torch[:, :, :acq_start] = 0
mask_torch[:, :, acq_end:] = 0
sample = VarNetSample(
masked_kspace=masked_kspace,
mask=mask_torch.to(torch.bool),
num_low_frequencies=0,
target=target_torch,
fname=fname,
slice_num=slice_num,
max_value=max_value,
crop_size=crop_size,
)
# whether to crop samples for batch processing
batch_crop = False
def save_img(x, fname):
slice_kspace2 = x
slice_image = fastmri.ifft2c(
slice_kspace2
) # Apply Inverse Fourier Transform to get the complex image
slice_image_abs = fastmri.complex_abs(
slice_image
) # Compute absolute value to get a real image
slice_image_rss = fastmri.rss(slice_image_abs, dim=0)
plt.imsave(f"{fname}.png", torch.abs(slice_image_rss), cmap="gray")
def save_raw_img(x, fname):
# slice_kspace2 = x
# slice_image = fastmri.ifft2c(
# slice_kspace2
# ) # Apply Inverse Fourier Transform to get the complex image
# slice_image_abs = fastmri.complex_abs(
# slice_image
# ) # Compute absolute value to get a real image
x = fastmri.rss(x, dim=0)[:, :, 0]
plt.imsave(f"{fname}.png", torch.abs(x))
if batch_crop:
# crop kspace data to minx, miny size (640, 320 cols)
square_crop = (attrs["recon_size"][0], attrs["recon_size"][1])
# print(square_crop)
cropped_kspace = fastmri.fft2c(
complex_center_crop(
fastmri.ifft2c(sample.masked_kspace), square_crop
)
)
cropped_kspace = complex_center_crop(cropped_kspace, (320, 320))
# print(cropped_kspace.shape)
# exit(0)
# CHECK: debugging purposes
# save_img(sample.masked_kspace, "og")
# save_img(cropped_kspace, "cropped")
# save_raw_img(sample.masked_kspace, "og_kspace")
# save_raw_img(cropped_kspace, "cropped_kspace")
# exit(0)
# crop mask shape
h_from = (mask_torch.shape[-2] - 320) // 2
h_to = h_from + 320
cropped_mask = mask_torch[..., :, h_from:h_to, :]
sample = VarNetSample(
masked_kspace=cropped_kspace,
mask=cropped_mask.to(torch.bool),
num_low_frequencies=0,
target=target_torch,
fname=fname,
slice_num=slice_num,
max_value=max_value,
crop_size=crop_size,
)
return sample
class EnhancedVarNetDataTransform(VarNetDataTransform):
"""
Enhanced Data Transformer for training VarNet models with additional functionality.
- allows for training on multiple patterns
"""
def __init__(
self, mask_funcs: List[MaskFunc] = None, use_seed: bool = True
):
self.mask_funcs = mask_funcs
self.use_seed = use_seed
def __call__(
self,
kspace: np.ndarray,
mask: np.ndarray,
target: Optional[np.ndarray],
attrs: Dict,
fname: str,
slice_num: int,
) -> VarNetSample:
"""
Args:
kspace: Input k-space of shape (num_coils, rows, cols) for
multi-coil data.
mask: Mask from the test dataset.
use mask for test data see og VarNetDataTransform __call__
target: Target image.
attrs: Acquisition related information stored in the HDF5 object.
fname: File name.
slice_num: Serial number of the slice.
Returns:
A VarNetSample with the masked k-space, sampling mask, target
image, the filename, the slice number, the maximum image value
(from target), the target crop size, and the number of low
frequency lines sampled.
"""
if target is not None:
target_torch = to_tensor(target)
max_value = attrs["max"]
else:
target_torch = torch.tensor(0)
max_value = 0.0
kspace_torch = to_tensor(kspace)
seed = None if not self.use_seed else tuple(map(ord, fname))
acq_start = attrs["padding_left"]
acq_end = attrs["padding_right"]
crop_size = (attrs["recon_size"][0], attrs["recon_size"][1])
# choose one of the masking functions provided randomly
mask_func = random.choice(self.mask_funcs)
masked_kspace, mask_torch, num_low_frequencies = apply_mask(
kspace_torch,
mask_func,
seed=seed,
padding=(acq_start, acq_end),
)
# print(masked_kspace.shape)
# print(mask_torch.shape)
# torch.save(masked_kspace, f"masked_kspace_{slice_num}.pkl")
# torch.save(mask_torch, f"mask_torch_{slice_num}.pkl")
sample = VarNetSample(
masked_kspace=masked_kspace,
mask=mask_torch.to(torch.bool),
num_low_frequencies=num_low_frequencies,
target=target_torch,
fname=fname,
slice_num=slice_num,
max_value=max_value,
crop_size=crop_size,
)
# whether to crop samples for batch processing
batch_crop = False
if batch_crop:
# crop kspace data to minx, miny size (640, 320 cols)
square_crop = (attrs["recon_size"][0], attrs["recon_size"][1])
# print(square_crop)
cropped_kspace = fastmri.fft2c(
complex_center_crop(
fastmri.ifft2c(sample.masked_kspace), square_crop
)
)
# cropped_kspace = complex_center_crop(cropped_kspace, (640, 320))
# exit(0)
# crop mask shape
h_from = (mask_torch.shape[-2] - 320) // 2
h_to = h_from + 320
cropped_mask = mask_torch[..., :, h_from:h_to, :]
sample = VarNetSample(
masked_kspace=cropped_kspace,
mask=cropped_mask.to(torch.bool),
num_low_frequencies=0,
target=target_torch,
fname=fname,
slice_num=slice_num,
max_value=max_value,
crop_size=crop_size,
)
return sample
class MiniCoilSample(NamedTuple):
"""
A sample of masked coil-compressed k-space for reconstruction.
Args:
kspace: the original k-space before masking.
masked_kspace: k-space after applying sampling mask.
mask: The applied sampling mask.
num_low_frequencies: The number of samples for the densely-sampled
center.
target: The target image (if applicable).
fname: File name.
slice_num: The slice index.
max_value: Maximum image value.
crop_size: The size to crop the final image.
"""
kspace: torch.Tensor
masked_kspace: torch.Tensor
mask: torch.Tensor
target: torch.Tensor
fname: str
slice_num: int
max_value: float
crop_size: Tuple[int, int]
class MiniCoilTransform:
"""
Multi-coil compressed transform, for faster prototyping.
"""
def __init__(
self,
mask_func: Optional[MaskFunc] = None,
use_seed: Optional[bool] = True,
crop_size: Optional[tuple] = None,
num_compressed_coils: Optional[int] = None,
):
"""
Args:
mask_func: Optional; A function that can create a mask of
appropriate shape. Defaults to None.
use_seed: If True, this class computes a pseudo random number
generator seed from the filename. This ensures that the same
mask is used for all the slices of a given volume every time.
crop_size: Image dimensions for mini MR images.
num_compressed_coils: Number of coils to output from coil
compression.
"""
self.mask_func = mask_func
self.use_seed = use_seed
self.crop_size = crop_size
self.num_compressed_coils = num_compressed_coils
def __call__(self, kspace, mask, target, attrs, fname, slice_num):
"""
Args:
kspace: Input k-space of shape (num_coils, rows, cols) for
multi-coil data.
mask: Mask from the test dataset. Not used if mask_func is defined.
target: Target image.
attrs: Acquisition related information stored in the HDF5 object.
fname: File name.
slice_num: Serial number of the slice.
Returns:
tuple containing:
kspace: original kspace (used for active acquisition only).
masked_kspace: k-space after applying sampling mask. If there
is no mask or mask_func, returns same as kspace.
mask: The applied sampling mask
target: The target image (if applicable). The target is built
from the RSS opp of all coils pre-compression.
fname: File name.
slice_num: The slice index.
max_value: Maximum image value.
crop_size: The size to crop the final image.
"""
if target is not None:
target = to_tensor(target)
max_value = attrs["max"]
else:
target = torch.tensor(0)
max_value = 0.0
if self.crop_size is None:
crop_size = torch.tensor(
[attrs["recon_size"][0], attrs["recon_size"][1]]
)
else:
if isinstance(self.crop_size, tuple) or isinstance(
self.crop_size, list
):
assert len(self.crop_size) == 2
if self.crop_size[0] is None or self.crop_size[1] is None:
crop_size = torch.tensor(
[attrs["recon_size"][0], attrs["recon_size"][1]]
)
else:
crop_size = torch.tensor(self.crop_size)
elif isinstance(self.crop_size, int):
crop_size = torch.tensor((self.crop_size, self.crop_size))
else:
raise ValueError(
"`crop_size` should be None, tuple, list, or int, not:"
f" {type(self.crop_size)}"
)
if self.num_compressed_coils is None:
num_compressed_coils = kspace.shape[0]
else:
num_compressed_coils = self.num_compressed_coils
seed = None if not self.use_seed else tuple(map(ord, fname))
acq_start = 0
acq_end = crop_size[1]
# new cropping section
square_crop = (attrs["recon_size"][0], attrs["recon_size"][1])
kspace = fastmri.fft2c(
complex_center_crop(fastmri.ifft2c(to_tensor(kspace)), square_crop)
).numpy()
kspace = complex_center_crop(kspace, crop_size)
# we calculate the target before coil compression. This causes the mini
# simulation to be one where we have a 15-coil, low-resolution image
# and our reconstructor has an SVD coil approximation. This is a little
# bit more realistic than doing the target after SVD compression
target = fastmri.rss_complex(fastmri.ifft2c(to_tensor(kspace)))
max_value = target.max()
# apply coil compression
new_shape = (num_compressed_coils,) + kspace.shape[1:]
kspace = np.reshape(kspace, (kspace.shape[0], -1))
left_vec, _, _ = np.linalg.svd(
kspace, compute_uv=True, full_matrices=False
)
kspace = np.reshape(
np.array(np.matrix(left_vec[:, :num_compressed_coils]).H @ kspace),
new_shape,
)
kspace = to_tensor(kspace)
# Mask kspace
if self.mask_func:
masked_kspace, mask, _ = apply_mask(
kspace, self.mask_func, seed, (acq_start, acq_end)
)
mask = mask.byte()
elif mask is not None:
masked_kspace = kspace
shape = np.array(kspace.shape)
num_cols = shape[-2]
shape[:-3] = 1
mask_shape = [1] * len(shape)
mask_shape[-2] = num_cols
mask = torch.from_numpy(
mask.reshape(*mask_shape).astype(np.float32)
)
mask = mask.reshape(*mask_shape)
mask = mask.byte()
else:
masked_kspace = kspace
shape = np.array(kspace.shape)
num_cols = shape[-2]
return MiniCoilSample(
kspace,
masked_kspace,
mask,
target,
fname,
slice_num,
max_value,
crop_size,
)
"""
sens maps & feature transformations
- expand
- reduce
- batch -> chan
- chan -> batch
"""
def sens_expand(x: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
"""
Calculates F (x sens_maps)
Parameters
----------
x : ndarray
Single-channel image of shape (..., H, W, 2)
sens_maps : ndarray
Sensitivity maps (image space)
Returns
-------
ndarray
Result of the operation F (x sens_maps)
"""
return fastmri.fft2c(fastmri.complex_mul(x, sens_maps))
def sens_reduce(k: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
"""
Calculates F^{-1}(k) * conj(sens_maps)
where conj(sens_maps) is the element-wise applied complex conjugate
Parameters
----------
k : ndarray
Multi-channel k-space of shape (B, C, H, W, 2)
sens_maps : ndarray
Sensitivity maps (image space)
Returns
-------
ndarray
Result of the operation F^{-1}(k) * conj(sens_maps)
"""
return fastmri.complex_mul(
fastmri.ifft2c(k), fastmri.complex_conj(sens_maps)
).sum(dim=1, keepdim=True)
def chans_to_batch_dim(x: torch.Tensor) -> Tuple[torch.Tensor, int]:
"""Reshapes batched multi-channel samples into multiple single channel samples.
Parameters
----------
x : torch.Tensor
x has shape (b, c, h, w, 2)
Returns
-------
Tuple[torch.Tensor, int]
tensor of shape (b * c, 1, h, w, 2), b
"""
b, c, h, w, comp = x.shape
return x.view(b * c, 1, h, w, comp), b
def batch_chans_to_chan_dim(x: torch.Tensor, batch_size: int) -> torch.Tensor:
"""Reshapes batched independent samples into original multi-channel samples.
Parameters
----------
x : torch.Tensor
tensor of shape (b * c, 1, h, w, 2)
batch_size : int
batch size
Returns
-------
torch.Tensor
original multi-channel tensor of shape (b, c, h, w, 2)
"""
bc, _, h, w, comp = x.shape
c = bc // batch_size
return x.view(batch_size, c, h, w, comp)
|