File size: 14,211 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
Modified for use in <TODO: paper name>
- minified and removed extraneous abstractions
- updated to latest version of lightning

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""

from collections import defaultdict
from io import BytesIO
import pathlib
import os
from argparse import ArgumentParser
from collections import defaultdict

import numpy as np
import wandb
import lightning as L
import torch
from torchmetrics.metric import Metric
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image

matplotlib.use("Agg")

from fastmri import evaluate


class DistributedMetricSum(Metric):
    def __init__(self, dist_sync_on_step=True):
        super().__init__(dist_sync_on_step=dist_sync_on_step)

        self.add_state(
            "quantity", default=torch.tensor(0.0), dist_reduce_fx="sum"
        )

    def update(self, batch: torch.Tensor):  # type: ignore
        self.quantity += batch

    def compute(self):
        return self.quantity


class MriModule(L.LightningModule):
    """
    Abstract super class for deep learning reconstruction models.

    This is a subclass of the LightningModule class from lightning,
    with some additional functionality specific to fastMRI:
        - Evaluating reconstructions
        - Visualization

    To implement a new reconstruction model, inherit from this class and
    implement the following methods:
        - training_step: Define what happens in one step of training
        - validation_step: Define what happens in one step of validation
        - test_step: Define what happens in one step of testing
        - configure_optimizers: Create and return the optimizers

    Other methods from LightningModule can be overridden as needed.
    """

    def __init__(self, num_log_images: int = 16):
        """
        Initialize the MRI module.

        Parameters
        ----------
        num_log_images : int, optional
            Number of images to log. Defaults to 16.
        """
        super().__init__()

        self.num_log_images = num_log_images
        self.val_log_indices = [1, 2, 3, 4, 5]
        self.val_batch_results = []

        self.NMSE = DistributedMetricSum()
        self.SSIM = DistributedMetricSum()
        self.PSNR = DistributedMetricSum()
        self.ValLoss = DistributedMetricSum()
        self.TotExamples = DistributedMetricSum()
        self.TotSliceExamples = DistributedMetricSum()

    def log_image(self, name, image):
        if self.logger != None:
            self.logger.log_image(
                key=f"{name}", images=[image], caption=[{self.global_step}]
            )

    def on_validation_batch_end(
        self, outputs, batch, batch_idx, dataloader_idx=0
    ):
        # breakpoint()
        val_logs = outputs

        mse_vals = defaultdict(dict)
        target_norms = defaultdict(dict)
        ssim_vals = defaultdict(dict)
        max_vals = dict()

        for i, fname in enumerate(val_logs["fname"]):
            if i == 0 and batch_idx in self.val_log_indices:
                key = f"val_images_idx_{batch_idx}"
                target = val_logs["target"][i].unsqueeze(0)
                output = val_logs["output"][i].unsqueeze(0)
                error = torch.abs(target - output)
                output = output / output.max()
                target = target / target.max()
                error = error / error.max()
                self.log_image(f"{key}/target", target)
                self.log_image(f"{key}/reconstruction", output)
                self.log_image(f"{key}/error", error)
            slice_num = int(val_logs["slice_num"][i].cpu())

            maxval = val_logs["max_value"][i].cpu().numpy()
            output = val_logs["output"][i].cpu().numpy()
            target = val_logs["target"][i].cpu().numpy()
            mse_vals[fname][slice_num] = torch.tensor(
                evaluate.mse(target, output)
            ).view(1)
            target_norms[fname][slice_num] = torch.tensor(
                evaluate.mse(target, np.zeros_like(target))
            ).view(1)
            ssim_vals[fname][slice_num] = torch.tensor(
                evaluate.ssim(
                    target[None, ...], output[None, ...], maxval=maxval
                )
            ).view(1)
            max_vals[fname] = maxval

        self.val_batch_results.append(
            {
                "slug": val_logs["slug"],
                "val_loss": val_logs["val_loss"],
                "mse_vals": dict(mse_vals),
                "target_norms": dict(target_norms),
                "ssim_vals": dict(ssim_vals),
                "max_vals": max_vals,
            }
        )

    def on_validation_epoch_end(self):
        val_logs = self.val_batch_results

        dataset_metrics = defaultdict(
            lambda: {
                "losses": [],
                "mse_vals": defaultdict(dict),
                "target_norms": defaultdict(dict),
                "ssim_vals": defaultdict(dict),
                "max_vals": dict(),
            }
        )

        # use dict updates to handle duplicate slices
        for val_log in val_logs:
            slug = val_log["slug"]
            dataset_metrics[slug]["losses"].append(val_log["val_loss"].view(-1))

            for k in val_log["mse_vals"].keys():
                dataset_metrics[slug]["mse_vals"][k].update(
                    val_log["mse_vals"][k]
                )
            for k in val_log["target_norms"].keys():
                dataset_metrics[slug]["target_norms"][k].update(
                    val_log["target_norms"][k]
                )
            for k in val_log["ssim_vals"].keys():
                dataset_metrics[slug]["ssim_vals"][k].update(
                    val_log["ssim_vals"][k]
                )
            for k in val_log["max_vals"]:
                dataset_metrics[slug]["max_vals"][k] = val_log["max_vals"][k]

        metrics_to_plot = {"psnr": [], "ssim": [], "nmse": []}
        slugs = []

        for slug, metrics_data in dataset_metrics.items():
            mse_vals, target_norms, ssim_vals, max_vals, losses = (
                metrics_data["mse_vals"],
                metrics_data["target_norms"],
                metrics_data["ssim_vals"],
                metrics_data["max_vals"],
                metrics_data["losses"],
            )
            # check to make sure we have all files in all metrics
            assert (
                mse_vals.keys()
                == target_norms.keys()
                == ssim_vals.keys()
                == max_vals.keys()
            )

            # apply means across image volumes
            metrics = {"nmse": 0, "ssim": 0, "psnr": 0}
            metric_values = {
                "nmse": [],
                "ssim": [],
                "psnr": [],
            }  # to store individual values for std
            local_examples = 0

            for fname in mse_vals.keys():
                local_examples = local_examples + 1
                mse_val = torch.mean(
                    torch.cat([v.view(-1) for _, v in mse_vals[fname].items()])
                )
                target_norm = torch.mean(
                    torch.cat(
                        [v.view(-1) for _, v in target_norms[fname].items()]
                    )
                )
                nmse = mse_val / target_norm
                psnr = 20 * torch.log10(
                    torch.tensor(
                        max_vals[fname],
                        dtype=mse_val.dtype,
                        device=mse_val.device,
                    )
                ) - 10 * torch.log10(mse_val)
                ssim = torch.mean(
                    torch.cat([v.view(-1) for _, v in ssim_vals[fname].items()])
                )

                # Accumulate metric values
                metrics["nmse"] += nmse
                metrics["psnr"] += psnr
                metrics["ssim"] += ssim

                # Store individual metric values for std calculation
                metric_values["nmse"].append(nmse)
                metric_values["psnr"].append(psnr)
                metric_values["ssim"].append(ssim)

            # reduce across ddp via sum
            metrics["nmse"] = self.NMSE(metrics["nmse"])
            metrics["ssim"] = self.SSIM(metrics["ssim"])
            metrics["psnr"] = self.PSNR(metrics["psnr"])

            tot_examples = self.TotExamples(torch.tensor(local_examples))
            val_loss = self.ValLoss(torch.sum(torch.cat(losses))) # type: ignore
            tot_slice_examples = self.TotSliceExamples(
                torch.tensor(len(losses), dtype=torch.float)
            )

            metrics_to_plot["nmse"].append(
                (
                    (metrics["nmse"] / tot_examples).item(),
                    torch.std(torch.stack(metric_values["nmse"])).item(),
                )
            )
            metrics_to_plot["psnr"].append(
                (
                    (metrics["psnr"] / tot_examples).item(),
                    torch.std(torch.stack(metric_values["psnr"])).item(),
                )
            )
            metrics_to_plot["ssim"].append(
                (
                    (metrics["ssim"] / tot_examples).item(),
                    torch.std(torch.stack(metric_values["ssim"])).item(),
                )
            )
            slugs.append(slug)

            # Log the mean values
            self.log(
                f"{slug}--validation_loss",
                val_loss / tot_slice_examples,
                prog_bar=True,
            )
            for metric, value in metrics.items():
                self.log(f"{slug}--val_metrics_{metric}", value / tot_examples)

            # Calculate and log the standard deviation for each metric
            for metric, values in metric_values.items():
                std_value = torch.std(torch.stack(values))
                self.log(f"{slug}--val_metrics_{metric}_std", std_value)

        # generate graph
        # breakpoint()
        for metric_name, values in metrics_to_plot.items():
            scores = [val[0] for val in values]
            std_devs = [val[1] for val in values]

            plt.figure(figsize=(10, 6))
            plt.bar(slugs, scores, yerr=std_devs, capsize=5)
            plt.xlabel("Dataset Slug")
            plt.ylabel(f"{metric_name.upper()} Score")
            plt.title(
                f"{metric_name.upper()} per Dataset with Standard Deviation"
            )
            plt.xticks(rotation=45)
            plt.tight_layout()

            # Save the plot
            buf = BytesIO()
            plt.savefig(buf, format="png")
            buf.seek(0)
            image = Image.open(buf)
            image_array = np.array(image)
            self.log_image(f"summary_plot_{metric_name}", image_array)
            buf.close()
            plt.close()

    def OLD_on_validation_epoch_end(self):
        val_logs = self.val_batch_results

        # aggregate losses
        losses = []
        mse_vals = defaultdict(dict)
        target_norms = defaultdict(dict)
        ssim_vals = defaultdict(dict)
        max_vals = dict()

        # use dict updates to handle duplicate slices
        for val_log in val_logs:
            losses.append(val_log["val_loss"].view(-1))

            for k in val_log["mse_vals"].keys():
                mse_vals[k].update(val_log["mse_vals"][k])
            for k in val_log["target_norms"].keys():
                target_norms[k].update(val_log["target_norms"][k])
            for k in val_log["ssim_vals"].keys():
                ssim_vals[k].update(val_log["ssim_vals"][k])
            for k in val_log["max_vals"]:
                max_vals[k] = val_log["max_vals"][k]

        # check to make sure we have all files in all metrics
        assert (
            mse_vals.keys()
            == target_norms.keys()
            == ssim_vals.keys()
            == max_vals.keys()
        )

        # apply means across image volumes
        metrics = {"nmse": 0, "ssim": 0, "psnr": 0}
        local_examples = 0
        for fname in mse_vals.keys():
            local_examples = local_examples + 1
            mse_val = torch.mean(
                torch.cat([v.view(-1) for _, v in mse_vals[fname].items()])
            )
            target_norm = torch.mean(
                torch.cat([v.view(-1) for _, v in target_norms[fname].items()])
            )
            metrics["nmse"] = metrics["nmse"] + mse_val / target_norm
            metrics["psnr"] = (
                metrics["psnr"]
                + 20
                * torch.log10(
                    torch.tensor(
                        max_vals[fname],
                        dtype=mse_val.dtype,
                        device=mse_val.device,
                    )
                )
                - 10 * torch.log10(mse_val)
            )
            metrics["ssim"] = metrics["ssim"] + torch.mean(
                torch.cat([v.view(-1) for _, v in ssim_vals[fname].items()])
            )

        # reduce across ddp via sum
        metrics["nmse"] = self.NMSE(metrics["nmse"])
        metrics["ssim"] = self.SSIM(metrics["ssim"])
        metrics["psnr"] = self.PSNR(metrics["psnr"])

        tot_examples = self.TotExamples(torch.tensor(local_examples))
        val_loss = self.ValLoss(torch.sum(torch.cat(losses)))
        tot_slice_examples = self.TotSliceExamples(
            torch.tensor(len(losses), dtype=torch.float)
        )

        self.log(
            "validation_loss", val_loss / tot_slice_examples, prog_bar=True
        )
        for metric, value in metrics.items():
            self.log(f"val_metrics_{metric}", value / tot_examples)

    @staticmethod
    def add_model_specific_args(parent_parser):  # pragma: no-cover
        """
        Define parameters that only apply to this model
        """
        parser = ArgumentParser(parents=[parent_parser], add_help=False)

        # logging params
        parser.add_argument(
            "--num_log_images",
            default=16,
            type=int,
            help="Number of images to log to Tensorboard",
        )

        return parser