Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,128 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import math
from typing import List, Literal, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import fastmri
from fastmri import transforms
from models.udno import UDNO
def sens_expand(x: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
"""
Calculates F (x sens_maps)
Parameters
----------
x : ndarray
Single-channel image of shape (..., H, W, 2)
sens_maps : ndarray
Sensitivity maps (image space)
Returns
-------
ndarray
Result of the operation F (x sens_maps)
"""
return fastmri.fft2c(fastmri.complex_mul(x, sens_maps))
def sens_reduce(k: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
"""
Calculates F^{-1}(k) * conj(sens_maps)
where conj(sens_maps) is the element-wise applied complex conjugate
Parameters
----------
k : ndarray
Multi-channel k-space of shape (B, C, H, W, 2)
sens_maps : ndarray
Sensitivity maps (image space)
Returns
-------
ndarray
Result of the operation F^{-1}(k) * conj(sens_maps)
"""
return fastmri.complex_mul(fastmri.ifft2c(k), fastmri.complex_conj(sens_maps)).sum(
dim=1, keepdim=True
)
def chans_to_batch_dim(x: torch.Tensor) -> Tuple[torch.Tensor, int]:
"""Reshapes batched multi-channel samples into multiple single channel samples.
Parameters
----------
x : torch.Tensor
x has shape (b, c, h, w, 2)
Returns
-------
Tuple[torch.Tensor, int]
tensor of shape (b * c, 1, h, w, 2), b
"""
b, c, h, w, comp = x.shape
return x.view(b * c, 1, h, w, comp), b
def batch_chans_to_chan_dim(x: torch.Tensor, batch_size: int) -> torch.Tensor:
"""Reshapes batched independent samples into original multi-channel samples.
Parameters
----------
x : torch.Tensor
tensor of shape (b * c, 1, h, w, 2)
batch_size : int
batch size
Returns
-------
torch.Tensor
original multi-channel tensor of shape (b, c, h, w, 2)
"""
bc, _, h, w, comp = x.shape
c = bc // batch_size
return x.view(batch_size, c, h, w, comp)
class NormUDNO(nn.Module):
"""
Normalized UDNO model.
Inputs are normalized before the UDNO for numerically stable training.
"""
def __init__(
self,
chans: int,
num_pool_layers: int,
radius_cutoff: float,
in_shape: Tuple[int, int],
kernel_shape: Tuple[int, int],
in_chans: int = 2,
out_chans: int = 2,
drop_prob: float = 0.0,
):
"""
Initialize the VarNet model.
Parameters
----------
chans : int
Number of output channels of the first convolution layer.
num_pools : int
Number of down-sampling and up-sampling layers.
in_chans : int, optional
Number of channels in the input to the U-Net model. Default is 2.
out_chans : int, optional
Number of channels in the output to the U-Net model. Default is 2.
drop_prob : float, optional
Dropout probability. Default is 0.0.
"""
super().__init__()
self.udno = UDNO(
in_chans=in_chans,
out_chans=out_chans,
radius_cutoff=radius_cutoff,
chans=chans,
num_pool_layers=num_pool_layers,
drop_prob=drop_prob,
in_shape=in_shape,
kernel_shape=kernel_shape,
)
def complex_to_chan_dim(self, x: torch.Tensor) -> torch.Tensor:
b, c, h, w, two = x.shape
assert two == 2
return x.permute(0, 4, 1, 2, 3).reshape(b, 2 * c, h, w)
def chan_complex_to_last_dim(self, x: torch.Tensor) -> torch.Tensor:
b, c2, h, w = x.shape
assert c2 % 2 == 0
c = c2 // 2
return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1).contiguous()
def norm(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# group norm
b, c, h, w = x.shape
x = x.view(b, 2, c // 2 * h * w)
mean = x.mean(dim=2).view(b, 2, 1, 1)
std = x.std(dim=2).view(b, 2, 1, 1)
x = x.view(b, c, h, w)
return (x - mean) / std, mean, std
def norm_new(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# FIXME: not working, wip
# group norm
b, c, h, w = x.shape
num_groups = 2
assert (
c % num_groups == 0
), f"Number of channels ({c}) must be divisible by number of groups ({num_groups})."
x = x.view(b, num_groups, c // num_groups * h * w)
mean = x.mean(dim=2).view(b, num_groups, 1, 1)
std = x.std(dim=2).view(b, num_groups, 1, 1)
print(x.shape, mean.shape, std.shape)
x = x.view(b, c, h, w)
mean = (
mean.view(b, num_groups, 1, 1)
.repeat(1, c // num_groups, h, w)
.view(b, c, h, w)
)
std = (
std.view(b, num_groups, 1, 1)
.repeat(1, c // num_groups, h, w)
.view(b, c, h, w)
)
return (x - mean) / std, mean, std
def unnorm(
self, x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor
) -> torch.Tensor:
return x * std + mean
def pad(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, Tuple[List[int], List[int], int, int]]:
_, _, h, w = x.shape
w_mult = ((w - 1) | 15) + 1
h_mult = ((h - 1) | 15) + 1
w_pad = [math.floor((w_mult - w) / 2), math.ceil((w_mult - w) / 2)]
h_pad = [math.floor((h_mult - h) / 2), math.ceil((h_mult - h) / 2)]
# TODO: fix this type when PyTorch fixes theirs
# the documentation lies - this actually takes a list
# https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L3457
# https://github.com/pytorch/pytorch/pull/16949
x = F.pad(x, w_pad + h_pad)
return x, (h_pad, w_pad, h_mult, w_mult)
def unpad(
self,
x: torch.Tensor,
h_pad: List[int],
w_pad: List[int],
h_mult: int,
w_mult: int,
) -> torch.Tensor:
return x[..., h_pad[0] : h_mult - h_pad[1], w_pad[0] : w_mult - w_pad[1]]
def forward(self, x: torch.Tensor) -> torch.Tensor:
if not x.shape[-1] == 2:
raise ValueError("Last dimension must be 2 for complex.")
chans = x.shape[1]
if chans == 2:
# FIXME: hard coded skip norm/pad temporarily to avoid group norm bug
x = self.complex_to_chan_dim(x)
x = self.udno(x)
return self.chan_complex_to_last_dim(x)
# get shapes for unet and normalize
x = self.complex_to_chan_dim(x)
x, mean, std = self.norm(x)
x, pad_sizes = self.pad(x)
x = self.udno(x)
# get shapes back and unnormalize
x = self.unpad(x, *pad_sizes)
x = self.unnorm(x, mean, std)
x = self.chan_complex_to_last_dim(x)
return x
class SensitivityModel(nn.Module):
"""
Learn sensitivity maps
"""
def __init__(
self,
chans: int,
num_pools: int,
radius_cutoff: float,
in_shape: Tuple[int, int],
kernel_shape: Tuple[int, int],
in_chans: int = 2,
out_chans: int = 2,
drop_prob: float = 0.0,
mask_center: bool = True,
):
"""
Parameters
----------
chans : int
Number of output channels of the first convolution layer.
num_pools : int
Number of down-sampling and up-sampling layers.
in_chans : int, optional
Number of channels in the input to the U-Net model. Default is 2.
out_chans : int, optional
Number of channels in the output to the U-Net model. Default is 2.
drop_prob : float, optional
Dropout probability. Default is 0.0.
mask_center : bool, optional
Whether to mask center of k-space for sensitivity map calculation.
Default is True.
"""
super().__init__()
self.mask_center = mask_center
self.norm_udno = NormUDNO(
chans,
num_pools,
radius_cutoff,
in_shape,
kernel_shape,
in_chans=in_chans,
out_chans=out_chans,
drop_prob=drop_prob,
)
def divide_root_sum_of_squares(self, x: torch.Tensor) -> torch.Tensor:
return x / fastmri.rss_complex(x, dim=1).unsqueeze(-1).unsqueeze(1)
def get_pad_and_num_low_freqs(
self, mask: torch.Tensor, num_low_frequencies: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if num_low_frequencies is None or any(
torch.any(t == 0) for t in num_low_frequencies
):
# get low frequency line locations and mask them out
squeezed_mask = mask[:, 0, 0, :, 0].to(torch.int8)
cent = squeezed_mask.shape[1] // 2
# running argmin returns the first non-zero
left = torch.argmin(squeezed_mask[:, :cent].flip(1), dim=1)
right = torch.argmin(squeezed_mask[:, cent:], dim=1)
num_low_frequencies_tensor = torch.max(
2 * torch.min(left, right), torch.ones_like(left)
) # force a symmetric center unless 1
else:
num_low_frequencies_tensor = num_low_frequencies * torch.ones(
mask.shape[0], dtype=mask.dtype, device=mask.device
)
pad = (mask.shape[-2] - num_low_frequencies_tensor + 1) // 2
return pad.type(torch.long), num_low_frequencies_tensor.type(torch.long)
def forward(
self,
masked_kspace: torch.Tensor,
mask: torch.Tensor,
num_low_frequencies: Optional[int] = None,
) -> torch.Tensor:
if self.mask_center:
pad, num_low_freqs = self.get_pad_and_num_low_freqs(
mask, num_low_frequencies
)
masked_kspace = transforms.batched_mask_center(
masked_kspace, pad, pad + num_low_freqs
)
# convert to image space
images, batches = chans_to_batch_dim(fastmri.ifft2c(masked_kspace))
# estimate sensitivities
return self.divide_root_sum_of_squares(
batch_chans_to_chan_dim(self.norm_udno(images), batches)
)
class VarNetBlock(nn.Module):
"""
Model block for iterative refinement of k-space data.
This model applies a combination of soft data consistency with the input
model as a regularizer. A series of these blocks can be stacked to form
the full variational network.
aka Refinement Module in Fig 1
"""
def __init__(self, model: nn.Module):
"""
Args:
model: Module for "regularization" component of variational
network.
"""
super().__init__()
self.model = model
self.dc_weight = nn.Parameter(torch.ones(1))
def forward(
self,
current_kspace: torch.Tensor,
ref_kspace: torch.Tensor,
mask: torch.Tensor,
sens_maps: torch.Tensor,
use_dc_term: bool = True,
) -> torch.Tensor:
"""
Args:
current_kspace: The current k-space data (frequency domain data)
being processed by the network. (torch.Tensor)
ref_kspace: Original subsampled k-space data (from which we are
reconstrucintg the image (reference k-space). (torch.Tensor)
mask: A binary mask indicating the locations in k-space where
data consistency should be enforced. (torch.Tensor)
sens_maps: Sensitivity maps for the different coils in parallel
imaging. (torch.Tensor)
"""
# model-term see orange box of Fig 1 in E2E-VarNet paper!
# multi channel k-space -> single channel image-space
b, c, h, w, _ = current_kspace.shape
if c == 30:
# get kspace and inpainted kspace
kspace = current_kspace[:, :15, :, :, :]
in_kspace = current_kspace[:, 15:, :, :, :]
# convert to image space
image = sens_reduce(kspace, sens_maps)
in_image = sens_reduce(in_kspace, sens_maps)
# concatenate both onto each other
reduced_image = torch.cat([image, in_image], dim=1)
else:
reduced_image = sens_reduce(current_kspace, sens_maps)
# single channel image-space
refined_image = self.model(reduced_image)
# single channel image-space -> multi channel k-space
model_term = sens_expand(refined_image, sens_maps)
# only use first 15 channels (masked_kspace) in the update
# current_kspace = current_kspace[:, :15, :, :, :]
if not use_dc_term:
return current_kspace - model_term
"""
Soft data consistency term:
- Calculates the difference between current k-space and reference k-space where the mask is true.
- Multiplies this difference by the data consistency weight.
"""
# dc_term: see green box of Fig 1 in E2E-VarNet paper!
zero = torch.zeros(1, 1, 1, 1, 1).to(current_kspace)
soft_dc = torch.where(mask, current_kspace - ref_kspace, zero) * self.dc_weight
return current_kspace - soft_dc - model_term
class NOVarnet(nn.Module):
"""
Neural Operator model for MRI reconstruction.
Uses a variational architecture (iterative updates) with a learned sensitivity
model. All operations are resolution invariant employing neural operator
modules (GNO, UDNO).
"""
def __init__(
self,
num_cascades: int = 12,
sens_chans: int = 8,
sens_pools: int = 4,
chans: int = 18,
pools: int = 4,
gno_chans: int = 16,
gno_pools: int = 4,
gno_radius_cutoff: float = 0.02,
gno_kernel_shape: Tuple[int, int] = (6, 7),
radius_cutoff: float = 0.01,
kernel_shape: Tuple[int, int] = (3, 4),
in_shape: Tuple[int, int] = (640, 320),
mask_center: bool = True,
use_dc_term: bool = True,
reduction_method: Literal["batch", "rss"] = "rss",
skip_method: Literal["replace", "add", "add_inv", "concat"] = "add",
):
"""
Parameters
----------
num_cascades : int
Number of cascades (i.e., layers) for variational network.
sens_chans : int
Number of channels for sensitivity map U-Net.
sens_pools : int
Number of downsampling and upsampling layers for sensitivity map U-Net.
chans : int
Number of channels for cascade U-Net.
pools : int
Number of downsampling and upsampling layers for cascade U-Net.
mask_center : bool
Whether to mask center of k-space for sensitivity map calculation.
use_dc_term : bool
Whether to use the data consistency term.
reduction_method : "batch" or "rss"
Method for reducing sensitivity maps to single channel.
"batch" reduces to single channel by stacking channels.
"rss" reduces to single channel by root sum of squares.
skip_method : "replace" or "add" or "add_inv" or "concat"
"replace" replaces the input with the output of the GNO
"add" adds the output of the GNO to the input
"add_inv" adds the output of the GNO to the input (only where samples are missing)
"concat" concatenates the output of the GNO to the input
"""
super().__init__()
self.sens_net = SensitivityModel(
sens_chans,
sens_pools,
radius_cutoff,
in_shape,
kernel_shape,
mask_center=mask_center,
)
self.gno = NormUDNO(
gno_chans,
gno_pools,
in_shape=in_shape,
radius_cutoff=radius_cutoff,
kernel_shape=kernel_shape,
# radius_cutoff=gno_radius_cutoff,
# kernel_shape=gno_kernel_shape,
in_chans=2,
out_chans=2,
)
self.cascades = nn.ModuleList(
[
VarNetBlock(
NormUDNO(
chans,
pools,
radius_cutoff,
in_shape,
kernel_shape,
in_chans=(
4 if skip_method == "concat" and cascade_idx == 0 else 2
),
out_chans=2,
)
)
for cascade_idx in range(num_cascades)
]
)
self.use_dc_term = use_dc_term
self.reduction_method = reduction_method
self.skip_method = skip_method
def forward(
self,
masked_kspace: torch.Tensor,
mask: torch.Tensor,
num_low_frequencies: Optional[int] = None,
) -> torch.Tensor:
# (B, C, X, Y, 2)
sens_maps = self.sens_net(masked_kspace, mask, num_low_frequencies)
# reduce before inpainting
if self.reduction_method == "rss":
# (B, 1, H, W, 2) single channel image space
x_reduced = sens_reduce(masked_kspace, sens_maps)
# (B, 1, H, W, 2)
k_reduced = fastmri.fft2c(x_reduced)
elif self.reduction_method == "batch":
k_reduced, b = chans_to_batch_dim(masked_kspace)
# inpainting
if self.skip_method == "replace":
kspace_pred = self.gno(k_reduced)
elif self.skip_method == "add_inv":
# FIXME: this is not correct (mask has shape B, 1, H, W, 2 and self.gno(k_reduced) has shape B*C, 1, H, W, 2)
kspace_pred = k_reduced.clone() + (~mask * self.gno(k_reduced))
elif self.skip_method == "add":
kspace_pred = k_reduced.clone() + self.gno(k_reduced)
elif self.skip_method == "concat":
kspace_pred = torch.cat([k_reduced.clone(), self.gno(k_reduced)], dim=1)
else:
raise NotImplementedError("skip_method not implemented")
# expand after inpainting
if self.reduction_method == "rss":
if self.skip_method == "concat":
# kspace_pred is (B, 2, H, W, 2)
kspace = kspace_pred[:, :1, :, :, :]
in_kspace = kspace_pred[:, 1:, :, :, :]
# B, 2C, H, W, 2
kspace_pred = torch.cat(
[sens_expand(kspace, sens_maps), sens_expand(in_kspace, sens_maps)],
dim=1,
)
else:
# (B, 1, H, W, 2) -> (B, C, H, W, 2) multi-channel k space
kspace_pred = sens_expand(kspace_pred, sens_maps)
elif self.reduction_method == "batch":
# (B, C, H, W, 2) multi-channel k space
if self.skip_method == "concat":
kspace = kspace_pred[:, :1, :, :, :]
in_kspace = kspace_pred[:, 1:, :, :, :]
# B, 2C, H, W, 2
kspace_pred = torch.cat(
[
batch_chans_to_chan_dim(kspace, b),
batch_chans_to_chan_dim(in_kspace, b),
],
dim=1,
)
else:
kspace_pred = batch_chans_to_chan_dim(kspace_pred, b)
# iterative update
for cascade in self.cascades:
kspace_pred = cascade(
kspace_pred, masked_kspace, mask, sens_maps, self.use_dc_term
)
spatial_pred = fastmri.ifft2c(kspace_pred)
spatial_pred_abs = fastmri.complex_abs(spatial_pred)
combined_spatial = fastmri.rss(spatial_pred_abs, dim=1)
return combined_spatial
|