File size: 20,128 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import math
from typing import List, Literal, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

import fastmri
from fastmri import transforms
from models.udno import UDNO


def sens_expand(x: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
    """
    Calculates F (x sens_maps)

    Parameters
    ----------
    x : ndarray
        Single-channel image of shape (..., H, W, 2)
    sens_maps : ndarray
        Sensitivity maps (image space)

    Returns
    -------
    ndarray
        Result of the operation F (x sens_maps)
    """
    return fastmri.fft2c(fastmri.complex_mul(x, sens_maps))


def sens_reduce(k: torch.Tensor, sens_maps: torch.Tensor) -> torch.Tensor:
    """
    Calculates F^{-1}(k) * conj(sens_maps)
    where conj(sens_maps) is the element-wise applied complex conjugate

    Parameters
    ----------
    k : ndarray
        Multi-channel k-space of shape (B, C, H, W, 2)
    sens_maps : ndarray
        Sensitivity maps (image space)

    Returns
    -------
    ndarray
        Result of the operation F^{-1}(k) * conj(sens_maps)
    """
    return fastmri.complex_mul(fastmri.ifft2c(k), fastmri.complex_conj(sens_maps)).sum(
        dim=1, keepdim=True
    )


def chans_to_batch_dim(x: torch.Tensor) -> Tuple[torch.Tensor, int]:
    """Reshapes batched multi-channel samples into multiple single channel samples.

    Parameters
    ----------
    x : torch.Tensor
        x has shape (b, c, h, w, 2)

    Returns
    -------
    Tuple[torch.Tensor, int]
        tensor of shape (b * c, 1, h, w, 2), b
    """
    b, c, h, w, comp = x.shape
    return x.view(b * c, 1, h, w, comp), b


def batch_chans_to_chan_dim(x: torch.Tensor, batch_size: int) -> torch.Tensor:
    """Reshapes batched independent samples into original multi-channel samples.

    Parameters
    ----------
    x : torch.Tensor
        tensor of shape (b * c, 1, h, w, 2)
    batch_size : int
        batch size

    Returns
    -------
    torch.Tensor
        original multi-channel tensor of shape (b, c, h, w, 2)
    """
    bc, _, h, w, comp = x.shape
    c = bc // batch_size
    return x.view(batch_size, c, h, w, comp)


class NormUDNO(nn.Module):
    """
    Normalized UDNO model.

    Inputs are normalized before the UDNO for numerically stable training.
    """

    def __init__(
        self,
        chans: int,
        num_pool_layers: int,
        radius_cutoff: float,
        in_shape: Tuple[int, int],
        kernel_shape: Tuple[int, int],
        in_chans: int = 2,
        out_chans: int = 2,
        drop_prob: float = 0.0,
    ):
        """
        Initialize the VarNet model.

        Parameters
        ----------
        chans : int
            Number of output channels of the first convolution layer.
        num_pools : int
            Number of down-sampling and up-sampling layers.
        in_chans : int, optional
            Number of channels in the input to the U-Net model. Default is 2.
        out_chans : int, optional
            Number of channels in the output to the U-Net model. Default is 2.
        drop_prob : float, optional
            Dropout probability. Default is 0.0.
        """
        super().__init__()

        self.udno = UDNO(
            in_chans=in_chans,
            out_chans=out_chans,
            radius_cutoff=radius_cutoff,
            chans=chans,
            num_pool_layers=num_pool_layers,
            drop_prob=drop_prob,
            in_shape=in_shape,
            kernel_shape=kernel_shape,
        )

    def complex_to_chan_dim(self, x: torch.Tensor) -> torch.Tensor:
        b, c, h, w, two = x.shape
        assert two == 2
        return x.permute(0, 4, 1, 2, 3).reshape(b, 2 * c, h, w)

    def chan_complex_to_last_dim(self, x: torch.Tensor) -> torch.Tensor:
        b, c2, h, w = x.shape
        assert c2 % 2 == 0
        c = c2 // 2
        return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1).contiguous()

    def norm(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # group norm
        b, c, h, w = x.shape
        x = x.view(b, 2, c // 2 * h * w)

        mean = x.mean(dim=2).view(b, 2, 1, 1)
        std = x.std(dim=2).view(b, 2, 1, 1)

        x = x.view(b, c, h, w)

        return (x - mean) / std, mean, std

    def norm_new(
        self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # FIXME: not working, wip
        # group norm
        b, c, h, w = x.shape
        num_groups = 2
        assert (
            c % num_groups == 0
        ), f"Number of channels ({c}) must be divisible by number of groups ({num_groups})."

        x = x.view(b, num_groups, c // num_groups * h * w)

        mean = x.mean(dim=2).view(b, num_groups, 1, 1)
        std = x.std(dim=2).view(b, num_groups, 1, 1)
        print(x.shape, mean.shape, std.shape)

        x = x.view(b, c, h, w)
        mean = (
            mean.view(b, num_groups, 1, 1)
            .repeat(1, c // num_groups, h, w)
            .view(b, c, h, w)
        )
        std = (
            std.view(b, num_groups, 1, 1)
            .repeat(1, c // num_groups, h, w)
            .view(b, c, h, w)
        )

        return (x - mean) / std, mean, std

    def unnorm(
        self, x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor
    ) -> torch.Tensor:
        return x * std + mean

    def pad(
        self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, Tuple[List[int], List[int], int, int]]:
        _, _, h, w = x.shape
        w_mult = ((w - 1) | 15) + 1
        h_mult = ((h - 1) | 15) + 1
        w_pad = [math.floor((w_mult - w) / 2), math.ceil((w_mult - w) / 2)]
        h_pad = [math.floor((h_mult - h) / 2), math.ceil((h_mult - h) / 2)]
        # TODO: fix this type when PyTorch fixes theirs
        # the documentation lies - this actually takes a list
        # https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L3457
        # https://github.com/pytorch/pytorch/pull/16949
        x = F.pad(x, w_pad + h_pad)

        return x, (h_pad, w_pad, h_mult, w_mult)

    def unpad(
        self,
        x: torch.Tensor,
        h_pad: List[int],
        w_pad: List[int],
        h_mult: int,
        w_mult: int,
    ) -> torch.Tensor:
        return x[..., h_pad[0] : h_mult - h_pad[1], w_pad[0] : w_mult - w_pad[1]]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if not x.shape[-1] == 2:
            raise ValueError("Last dimension must be 2 for complex.")

        chans = x.shape[1]
        if chans == 2:
            # FIXME: hard coded skip norm/pad temporarily to avoid group norm bug
            x = self.complex_to_chan_dim(x)
            x = self.udno(x)
            return self.chan_complex_to_last_dim(x)

        # get shapes for unet and normalize
        x = self.complex_to_chan_dim(x)
        x, mean, std = self.norm(x)
        x, pad_sizes = self.pad(x)

        x = self.udno(x)

        # get shapes back and unnormalize
        x = self.unpad(x, *pad_sizes)
        x = self.unnorm(x, mean, std)
        x = self.chan_complex_to_last_dim(x)

        return x


class SensitivityModel(nn.Module):
    """
    Learn sensitivity maps
    """

    def __init__(
        self,
        chans: int,
        num_pools: int,
        radius_cutoff: float,
        in_shape: Tuple[int, int],
        kernel_shape: Tuple[int, int],
        in_chans: int = 2,
        out_chans: int = 2,
        drop_prob: float = 0.0,
        mask_center: bool = True,
    ):
        """
        Parameters
        ----------
        chans : int
            Number of output channels of the first convolution layer.
        num_pools : int
            Number of down-sampling and up-sampling layers.
        in_chans : int, optional
            Number of channels in the input to the U-Net model. Default is 2.
        out_chans : int, optional
            Number of channels in the output to the U-Net model. Default is 2.
        drop_prob : float, optional
            Dropout probability. Default is 0.0.
        mask_center : bool, optional
            Whether to mask center of k-space for sensitivity map calculation.
            Default is True.
        """
        super().__init__()
        self.mask_center = mask_center
        self.norm_udno = NormUDNO(
            chans,
            num_pools,
            radius_cutoff,
            in_shape,
            kernel_shape,
            in_chans=in_chans,
            out_chans=out_chans,
            drop_prob=drop_prob,
        )

    def divide_root_sum_of_squares(self, x: torch.Tensor) -> torch.Tensor:
        return x / fastmri.rss_complex(x, dim=1).unsqueeze(-1).unsqueeze(1)

    def get_pad_and_num_low_freqs(
        self, mask: torch.Tensor, num_low_frequencies: Optional[int] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if num_low_frequencies is None or any(
            torch.any(t == 0) for t in num_low_frequencies
        ):
            # get low frequency line locations and mask them out
            squeezed_mask = mask[:, 0, 0, :, 0].to(torch.int8)
            cent = squeezed_mask.shape[1] // 2
            # running argmin returns the first non-zero
            left = torch.argmin(squeezed_mask[:, :cent].flip(1), dim=1)
            right = torch.argmin(squeezed_mask[:, cent:], dim=1)
            num_low_frequencies_tensor = torch.max(
                2 * torch.min(left, right), torch.ones_like(left)
            )  # force a symmetric center unless 1
        else:
            num_low_frequencies_tensor = num_low_frequencies * torch.ones(
                mask.shape[0], dtype=mask.dtype, device=mask.device
            )

        pad = (mask.shape[-2] - num_low_frequencies_tensor + 1) // 2

        return pad.type(torch.long), num_low_frequencies_tensor.type(torch.long)

    def forward(
        self,
        masked_kspace: torch.Tensor,
        mask: torch.Tensor,
        num_low_frequencies: Optional[int] = None,
    ) -> torch.Tensor:
        if self.mask_center:
            pad, num_low_freqs = self.get_pad_and_num_low_freqs(
                mask, num_low_frequencies
            )
            masked_kspace = transforms.batched_mask_center(
                masked_kspace, pad, pad + num_low_freqs
            )

        # convert to image space
        images, batches = chans_to_batch_dim(fastmri.ifft2c(masked_kspace))

        # estimate sensitivities
        return self.divide_root_sum_of_squares(
            batch_chans_to_chan_dim(self.norm_udno(images), batches)
        )


class VarNetBlock(nn.Module):
    """
    Model block for iterative refinement of k-space data.

    This model applies a combination of soft data consistency with the input
    model as a regularizer. A series of these blocks can be stacked to form
    the full variational network.

    aka Refinement Module in Fig 1
    """

    def __init__(self, model: nn.Module):
        """
        Args:
            model: Module for "regularization" component of variational
                network.
        """
        super().__init__()

        self.model = model
        self.dc_weight = nn.Parameter(torch.ones(1))

    def forward(
        self,
        current_kspace: torch.Tensor,
        ref_kspace: torch.Tensor,
        mask: torch.Tensor,
        sens_maps: torch.Tensor,
        use_dc_term: bool = True,
    ) -> torch.Tensor:
        """
        Args:
            current_kspace: The current k-space data (frequency domain data)
                            being processed by the network. (torch.Tensor)
            ref_kspace: Original subsampled k-space data (from which we are
                reconstrucintg the image (reference k-space). (torch.Tensor)
            mask: A binary mask indicating the locations in k-space where
                data consistency should be enforced. (torch.Tensor)
            sens_maps: Sensitivity maps for the different coils in parallel
                    imaging. (torch.Tensor)
        """

        # model-term see orange box of Fig 1 in E2E-VarNet paper!
        # multi channel k-space -> single channel image-space
        b, c, h, w, _ = current_kspace.shape

        if c == 30:
            # get kspace and inpainted kspace
            kspace = current_kspace[:, :15, :, :, :]
            in_kspace = current_kspace[:, 15:, :, :, :]
            # convert to image space
            image = sens_reduce(kspace, sens_maps)
            in_image = sens_reduce(in_kspace, sens_maps)
            # concatenate both onto each other
            reduced_image = torch.cat([image, in_image], dim=1)
        else:
            reduced_image = sens_reduce(current_kspace, sens_maps)

        # single channel image-space
        refined_image = self.model(reduced_image)

        # single channel image-space -> multi channel k-space
        model_term = sens_expand(refined_image, sens_maps)

        # only use first 15 channels (masked_kspace) in the update
        # current_kspace = current_kspace[:, :15, :, :, :]

        if not use_dc_term:
            return current_kspace - model_term

        """
        Soft data consistency term:
            - Calculates the difference between current k-space and reference k-space where the mask is true.
            - Multiplies this difference by the data consistency weight.
        """
        # dc_term: see green box of Fig 1 in E2E-VarNet paper!
        zero = torch.zeros(1, 1, 1, 1, 1).to(current_kspace)
        soft_dc = torch.where(mask, current_kspace - ref_kspace, zero) * self.dc_weight
        return current_kspace - soft_dc - model_term


class NOVarnet(nn.Module):
    """
    Neural Operator model for MRI reconstruction.

    Uses a variational architecture (iterative updates) with a learned sensitivity
    model. All operations are resolution invariant employing neural operator
    modules (GNO, UDNO).
    """

    def __init__(
        self,
        num_cascades: int = 12,
        sens_chans: int = 8,
        sens_pools: int = 4,
        chans: int = 18,
        pools: int = 4,
        gno_chans: int = 16,
        gno_pools: int = 4,
        gno_radius_cutoff: float = 0.02,
        gno_kernel_shape: Tuple[int, int] = (6, 7),
        radius_cutoff: float = 0.01,
        kernel_shape: Tuple[int, int] = (3, 4),
        in_shape: Tuple[int, int] = (640, 320),
        mask_center: bool = True,
        use_dc_term: bool = True,
        reduction_method: Literal["batch", "rss"] = "rss",
        skip_method: Literal["replace", "add", "add_inv", "concat"] = "add",
    ):
        """
        Parameters
        ----------
        num_cascades : int
            Number of cascades (i.e., layers) for variational network.
        sens_chans : int
            Number of channels for sensitivity map U-Net.
        sens_pools : int
            Number of downsampling and upsampling layers for sensitivity map U-Net.
        chans : int
            Number of channels for cascade U-Net.
        pools : int
            Number of downsampling and upsampling layers for cascade U-Net.
        mask_center : bool
            Whether to mask center of k-space for sensitivity map calculation.
        use_dc_term : bool
            Whether to use the data consistency term.
        reduction_method : "batch" or "rss"
            Method for reducing sensitivity maps to single channel.
            "batch" reduces to single channel by stacking channels.
            "rss" reduces to single channel by root sum of squares.
        skip_method : "replace" or "add" or "add_inv" or "concat"
            "replace" replaces the input with the output of the GNO
            "add" adds the output of the GNO to the input
            "add_inv" adds the output of the GNO to the input (only where samples are missing)
            "concat" concatenates the output of the GNO to the input
        """

        super().__init__()

        self.sens_net = SensitivityModel(
            sens_chans,
            sens_pools,
            radius_cutoff,
            in_shape,
            kernel_shape,
            mask_center=mask_center,
        )
        self.gno = NormUDNO(
            gno_chans,
            gno_pools,
            in_shape=in_shape,
            radius_cutoff=radius_cutoff,
            kernel_shape=kernel_shape,
            # radius_cutoff=gno_radius_cutoff,
            # kernel_shape=gno_kernel_shape,
            in_chans=2,
            out_chans=2,
        )
        self.cascades = nn.ModuleList(
            [
                VarNetBlock(
                    NormUDNO(
                        chans,
                        pools,
                        radius_cutoff,
                        in_shape,
                        kernel_shape,
                        in_chans=(
                            4 if skip_method == "concat" and cascade_idx == 0 else 2
                        ),
                        out_chans=2,
                    )
                )
                for cascade_idx in range(num_cascades)
            ]
        )
        self.use_dc_term = use_dc_term
        self.reduction_method = reduction_method
        self.skip_method = skip_method

    def forward(
        self,
        masked_kspace: torch.Tensor,
        mask: torch.Tensor,
        num_low_frequencies: Optional[int] = None,
    ) -> torch.Tensor:

        # (B, C, X, Y, 2)
        sens_maps = self.sens_net(masked_kspace, mask, num_low_frequencies)

        # reduce before inpainting
        if self.reduction_method == "rss":
            # (B, 1, H, W, 2) single channel image space
            x_reduced = sens_reduce(masked_kspace, sens_maps)
            # (B, 1, H, W, 2)
            k_reduced = fastmri.fft2c(x_reduced)
        elif self.reduction_method == "batch":
            k_reduced, b = chans_to_batch_dim(masked_kspace)

        # inpainting
        if self.skip_method == "replace":
            kspace_pred = self.gno(k_reduced)
        elif self.skip_method == "add_inv":
            # FIXME: this is not correct (mask has shape B, 1, H, W, 2 and self.gno(k_reduced) has shape B*C, 1, H, W, 2)
            kspace_pred = k_reduced.clone() + (~mask * self.gno(k_reduced))
        elif self.skip_method == "add":
            kspace_pred = k_reduced.clone() + self.gno(k_reduced)
        elif self.skip_method == "concat":
            kspace_pred = torch.cat([k_reduced.clone(), self.gno(k_reduced)], dim=1)
        else:
            raise NotImplementedError("skip_method not implemented")

        # expand after inpainting
        if self.reduction_method == "rss":
            if self.skip_method == "concat":
                # kspace_pred is (B, 2, H, W, 2)
                kspace = kspace_pred[:, :1, :, :, :]
                in_kspace = kspace_pred[:, 1:, :, :, :]
                # B, 2C, H, W, 2
                kspace_pred = torch.cat(
                    [sens_expand(kspace, sens_maps), sens_expand(in_kspace, sens_maps)],
                    dim=1,
                )
            else:
                # (B, 1, H, W, 2) -> (B, C, H, W, 2) multi-channel k space
                kspace_pred = sens_expand(kspace_pred, sens_maps)
        elif self.reduction_method == "batch":
            # (B, C, H, W, 2) multi-channel k space
            if self.skip_method == "concat":
                kspace = kspace_pred[:, :1, :, :, :]
                in_kspace = kspace_pred[:, 1:, :, :, :]
                # B, 2C, H, W, 2
                kspace_pred = torch.cat(
                    [
                        batch_chans_to_chan_dim(kspace, b),
                        batch_chans_to_chan_dim(in_kspace, b),
                    ],
                    dim=1,
                )
            else:
                kspace_pred = batch_chans_to_chan_dim(kspace_pred, b)

        # iterative update
        for cascade in self.cascades:
            kspace_pred = cascade(
                kspace_pred, masked_kspace, mask, sens_maps, self.use_dc_term
            )

        spatial_pred = fastmri.ifft2c(kspace_pred)
        spatial_pred_abs = fastmri.complex_abs(spatial_pred)
        combined_spatial = fastmri.rss(spatial_pred_abs, dim=1)

        return combined_spatial