Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,584 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import math
import os
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import fastmri
from fastmri import transforms
from models.unet import Unet
class NormUnet(nn.Module):
"""
Normalized U-Net model.
This is the same as a regular U-Net, but with normalization applied to the
input before the U-Net. This keeps the values more numerically stable
during training.
"""
def __init__(
self,
chans: int,
num_pools: int,
in_chans: int = 2,
out_chans: int = 2,
drop_prob: float = 0.0,
):
"""
Initialize the VarNet model.
Parameters
----------
chans : int
Number of output channels of the first convolution layer.
num_pools : int
Number of down-sampling and up-sampling layers.
in_chans : int, optional
Number of channels in the input to the U-Net model. Default is 2.
out_chans : int, optional
Number of channels in the output to the U-Net model. Default is 2.
drop_prob : float, optional
Dropout probability. Default is 0.0.
"""
super().__init__()
self.unet = Unet(
in_chans=in_chans,
out_chans=out_chans,
chans=chans,
num_pool_layers=num_pools,
drop_prob=drop_prob,
)
def complex_to_chan_dim(self, x: torch.Tensor) -> torch.Tensor:
b, c, h, w, two = x.shape
assert two == 2
return x.permute(0, 4, 1, 2, 3).reshape(b, 2 * c, h, w)
def chan_complex_to_last_dim(self, x: torch.Tensor) -> torch.Tensor:
b, c2, h, w = x.shape
assert c2 % 2 == 0
c = c2 // 2
return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1).contiguous()
def norm(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# group norm
b, c, h, w = x.shape
x = x.view(b, 2, c // 2 * h * w)
mean = x.mean(dim=2).view(b, 2, 1, 1)
std = x.std(dim=2).view(b, 2, 1, 1)
x = x.view(b, c, h, w)
return (x - mean) / std, mean, std
def unnorm(
self, x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor
) -> torch.Tensor:
return x * std + mean
def pad(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, Tuple[List[int], List[int], int, int]]:
_, _, h, w = x.shape
w_mult = ((w - 1) | 15) + 1
h_mult = ((h - 1) | 15) + 1
w_pad = [math.floor((w_mult - w) / 2), math.ceil((w_mult - w) / 2)]
h_pad = [math.floor((h_mult - h) / 2), math.ceil((h_mult - h) / 2)]
# TODO: fix this type when PyTorch fixes theirs
# the documentation lies - this actually takes a list
# https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L3457
# https://github.com/pytorch/pytorch/pull/16949
x = F.pad(x, w_pad + h_pad)
return x, (h_pad, w_pad, h_mult, w_mult)
def unpad(
self,
x: torch.Tensor,
h_pad: List[int],
w_pad: List[int],
h_mult: int,
w_mult: int,
) -> torch.Tensor:
return x[
..., h_pad[0] : h_mult - h_pad[1], w_pad[0] : w_mult - w_pad[1]
]
def forward(self, x: torch.Tensor) -> torch.Tensor:
if not x.shape[-1] == 2:
raise ValueError("Last dimension must be 2 for complex.")
# get shapes for unet and normalize
x = self.complex_to_chan_dim(x)
x, mean, std = self.norm(x)
x, pad_sizes = self.pad(x)
x = self.unet(x)
# get shapes back and unnormalize
x = self.unpad(x, *pad_sizes)
x = self.unnorm(x, mean, std)
x = self.chan_complex_to_last_dim(x)
return x
class SensitivityModel(nn.Module):
"""
Model for learning sensitivity estimation from k-space data.
This model applies an IFFT to multichannel k-space data and then a U-Net
to the coil images to estimate coil sensitivities. It can be used with the
end-to-end variational network.
Input: multi-coil k-space data
Output: multi-coil spatial domain sensitivity maps
"""
def __init__(
self,
chans: int,
num_pools: int,
in_chans: int = 2,
out_chans: int = 2,
drop_prob: float = 0.0,
mask_center: bool = True,
):
"""
Parameters
----------
chans : int
Number of output channels of the first convolution layer.
num_pools : int
Number of down-sampling and up-sampling layers.
in_chans : int, optional
Number of channels in the input to the U-Net model. Default is 2.
out_chans : int, optional
Number of channels in the output to the U-Net model. Default is 2.
drop_prob : float, optional
Dropout probability. Default is 0.0.
mask_center : bool, optional
Whether to mask center of k-space for sensitivity map calculation.
Default is True.
"""
super().__init__()
self.mask_center = mask_center
self.norm_unet = NormUnet(
chans,
num_pools,
in_chans=in_chans,
out_chans=out_chans,
drop_prob=drop_prob,
)
def chans_to_batch_dim(self, x: torch.Tensor) -> Tuple[torch.Tensor, int]:
b, c, h, w, comp = x.shape
return x.view(b * c, 1, h, w, comp), b
def batch_chans_to_chan_dim(
self,
x: torch.Tensor,
batch_size: int,
) -> torch.Tensor:
bc, _, h, w, comp = x.shape
c = bc // batch_size
return x.view(batch_size, c, h, w, comp)
def divide_root_sum_of_squares(self, x: torch.Tensor) -> torch.Tensor:
return x / fastmri.rss_complex(x, dim=1).unsqueeze(-1).unsqueeze(1)
def get_pad_and_num_low_freqs(
self, mask: torch.Tensor, num_low_frequencies: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if num_low_frequencies is None or any(
torch.any(t == 0) for t in num_low_frequencies
):
# get low frequency line locations and mask them out
squeezed_mask = mask[:, 0, 0, :, 0].to(torch.int8)
cent = squeezed_mask.shape[1] // 2
# running argmin returns the first non-zero
left = torch.argmin(squeezed_mask[:, :cent].flip(1), dim=1)
right = torch.argmin(squeezed_mask[:, cent:], dim=1)
num_low_frequencies_tensor = torch.max(
2 * torch.min(left, right), torch.ones_like(left)
) # force a symmetric center unless 1
else:
num_low_frequencies_tensor = num_low_frequencies * torch.ones(
mask.shape[0], dtype=mask.dtype, device=mask.device
)
pad = (mask.shape[-2] - num_low_frequencies_tensor + 1) // 2
return pad.type(torch.long), num_low_frequencies_tensor.type(torch.long)
def forward(
self,
masked_kspace: torch.Tensor,
mask: torch.Tensor,
num_low_frequencies: Optional[int] = None,
) -> torch.Tensor:
if self.mask_center:
pad, num_low_freqs = self.get_pad_and_num_low_freqs(
mask, num_low_frequencies
)
masked_kspace = transforms.batched_mask_center(
masked_kspace, pad, pad + num_low_freqs
)
# convert to image space
images, batches = self.chans_to_batch_dim(fastmri.ifft2c(masked_kspace))
# estimate sensitivities
return self.divide_root_sum_of_squares(
self.batch_chans_to_chan_dim(self.norm_unet(images), batches)
)
class VarNet(nn.Module):
"""
A full variational network model.
This model applies a combination of soft data consistency with a U-Net
regularizer. To use non-U-Net regularizers, use VarNetBlock.
Input: multi-channel k-space data
Output: single-channel RSS reconstructed image
"""
def __init__(
self,
num_cascades: int = 12,
sens_chans: int = 8,
sens_pools: int = 4,
chans: int = 18,
pools: int = 4,
mask_center: bool = True,
):
"""
Parameters
----------
num_cascades : int
Number of cascades (i.e., layers) for variational network.
sens_chans : int
Number of channels for sensitivity map U-Net.
sens_pools : int
Number of downsampling and upsampling layers for sensitivity map U-Net.
chans : int
Number of channels for cascade U-Net.
pools : int
Number of downsampling and upsampling layers for cascade U-Net.
mask_center : bool
Whether to mask center of k-space for sensitivity map calculation.
"""
super().__init__()
self.sens_net = SensitivityModel(
chans=sens_chans,
num_pools=sens_pools,
mask_center=mask_center,
)
self.cascades = nn.ModuleList(
[VarNetBlock(NormUnet(chans, pools)) for _ in range(num_cascades)]
)
def forward(
self,
masked_kspace: torch.Tensor,
mask: torch.Tensor,
num_low_frequencies: Optional[int] = None,
) -> torch.Tensor:
sens_maps = self.sens_net(masked_kspace, mask, num_low_frequencies)
kspace_pred = masked_kspace.clone()
for cascade in self.cascades:
kspace_pred = cascade(kspace_pred, masked_kspace, mask, sens_maps)
spatial_pred = fastmri.ifft2c(kspace_pred)
# ---------> FIXME: CHANGE FOR MVUE MODE
if self.training and os.getenv("MVUE") in ["yes", "1", "true", "True"]:
combined_spatial = fastmri.mvue(spatial_pred, sens_maps, dim=1)
else:
spatial_pred_abs = fastmri.complex_abs(spatial_pred)
combined_spatial = fastmri.rss(spatial_pred_abs, dim=1)
return combined_spatial
class VarNetBlock(nn.Module):
"""
Model block for end-to-end variational network (refinemnt module)
This model applies a combination of soft data consistency with the input
model as a regularizer. A series of these blocks can be stacked to form
the full variational network.
Input: multi-channel k-space data
Output: multi-channel k-space data
"""
def __init__(self, model: nn.Module):
"""
Parameters
----------
model : nn.Module
Module for "regularization" component of variational network.
"""
super().__init__()
self.model = model
self.dc_weight = nn.Parameter(torch.ones(1))
def sens_expand(
self, x: torch.Tensor, sens_maps: torch.Tensor
) -> torch.Tensor:
"""
Calculates F (x sens_maps)
"""
return fastmri.fft2c(fastmri.complex_mul(x, sens_maps))
def sens_reduce(
self, x: torch.Tensor, sens_maps: torch.Tensor
) -> torch.Tensor:
"""
Calculates F^{-1}(x) \overline{sens_maps}
where \overline{sens_maps} is the element-wise applied complex conjugate
"""
return fastmri.complex_mul(
fastmri.ifft2c(x), fastmri.complex_conj(sens_maps)
).sum(dim=1, keepdim=True)
def forward(
self,
current_kspace: torch.Tensor,
ref_kspace: torch.Tensor,
mask: torch.Tensor,
sens_maps: torch.Tensor,
) -> torch.Tensor:
"""
Parameters
----------
current_kspace : torch.Tensor
The current k-space data (frequency domain data) being processed by the network.
ref_kspace : torch.Tensor
The reference k-space data (measured data) used for data consistency.
mask : torch.Tensor
A binary mask indicating the locations in k-space where data consistency should be enforced.
sens_maps : torch.Tensor
Sensitivity maps for the different coils in parallel imaging.
Returns
-------
torch.Tensor
The output k-space data after applying the variational network block.
"""
"""
Model term:
- Reduces the current k-space data using the sensitivity maps (inverse Fourier transform followed by element-wise multiplication and summation).
- Applies the neural network model to the reduced data.
- Expands the output of the model using the sensitivity maps (element-wise multiplication followed by Fourier transform).
"""
model_term = self.sens_expand(
self.model(self.sens_reduce(current_kspace, sens_maps)), sens_maps
)
"""
Soft data consistency term:
- Calculates the difference between current k-space and reference k-space where the mask is true.
- Multiplies this difference by the data consistency weight.
"""
zero = torch.zeros(1, 1, 1, 1, 1).to(current_kspace)
soft_dc = (
torch.where(mask, current_kspace - ref_kspace, zero)
* self.dc_weight
)
# with data consistency term (removed for single cascade experiments)
return current_kspace - soft_dc - model_term
|