Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,987 Bytes
1b34a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# coding=utf-8
# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import numpy as np
def _precompute_grid(n, grid="equidistant", a=0.0, b=1.0, periodic=False):
if (grid != "equidistant") and periodic:
raise ValueError(f"Periodic grid is only supported on equidistant grids.")
# compute coordinates
if grid == "equidistant":
xlg, wlg = trapezoidal_weights(n, a=a, b=b, periodic=periodic)
elif grid == "legendre-gauss":
xlg, wlg = legendre_gauss_weights(n, a=a, b=b)
elif grid == "lobatto":
xlg, wlg = lobatto_weights(n, a=a, b=b)
elif grid == "equiangular":
xlg, wlg = clenshaw_curtiss_weights(n, a=a, b=b)
else:
raise ValueError(f"Unknown grid type {grid}")
return xlg, wlg
def _precompute_latitudes(nlat, grid="equiangular"):
r"""
Convenience routine to precompute latitudes
"""
# compute coordinates
xlg, wlg = _precompute_grid(nlat, grid=grid, a=-1.0, b=1.0, periodic=False)
lats = np.flip(np.arccos(xlg)).copy()
wlg = np.flip(wlg).copy()
return lats, wlg
def trapezoidal_weights(n, a=-1.0, b=1.0, periodic=False):
r"""
Helper routine which returns equidistant nodes with trapezoidal weights
on the interval [a, b]
"""
xlg = np.linspace(a, b, n)
wlg = (b - a) / (n - 1) * np.ones(n)
if not periodic:
wlg[0] *= 0.5
wlg[-1] *= 0.5
return xlg, wlg
def legendre_gauss_weights(n, a=-1.0, b=1.0):
r"""
Helper routine which returns the Legendre-Gauss nodes and weights
on the interval [a, b]
"""
xlg, wlg = np.polynomial.legendre.leggauss(n)
xlg = (b - a) * 0.5 * xlg + (b + a) * 0.5
wlg = wlg * (b - a) * 0.5
return xlg, wlg
def lobatto_weights(n, a=-1.0, b=1.0, tol=1e-16, maxiter=100):
r"""
Helper routine which returns the Legendre-Gauss-Lobatto nodes and weights
on the interval [a, b]
"""
wlg = np.zeros((n,))
tlg = np.zeros((n,))
tmp = np.zeros((n,))
# Vandermonde Matrix
vdm = np.zeros((n, n))
# initialize Chebyshev nodes as first guess
for i in range(n):
tlg[i] = -np.cos(np.pi * i / (n - 1))
tmp = 2.0
for i in range(maxiter):
tmp = tlg
vdm[:, 0] = 1.0
vdm[:, 1] = tlg
for k in range(2, n):
vdm[:, k] = (
(2 * k - 1) * tlg * vdm[:, k - 1] - (k - 1) * vdm[:, k - 2]
) / k
tlg = tmp - (tlg * vdm[:, n - 1] - vdm[:, n - 2]) / (n * vdm[:, n - 1])
if max(abs(tlg - tmp).flatten()) < tol:
break
wlg = 2.0 / ((n * (n - 1)) * (vdm[:, n - 1] ** 2))
# rescale
tlg = (b - a) * 0.5 * tlg + (b + a) * 0.5
wlg = wlg * (b - a) * 0.5
return tlg, wlg
def clenshaw_curtiss_weights(n, a=-1.0, b=1.0):
r"""
Computation of the Clenshaw-Curtis quadrature nodes and weights.
This implementation follows
[1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018.
"""
assert n > 1
tcc = np.cos(np.linspace(np.pi, 0, n))
if n == 2:
wcc = np.array([1.0, 1.0])
else:
n1 = n - 1
N = np.arange(1, n1, 2)
l = len(N)
m = n1 - l
v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)])
v = 0 - v[:-1] - v[-1:0:-1]
g0 = -np.ones(n1)
g0[l] = g0[l] + n1
g0[m] = g0[m] + n1
g = g0 / (n1**2 - 1 + (n1 % 2))
wcc = np.fft.ifft(v + g).real
wcc = np.concatenate((wcc, wcc[:1]))
# rescale
tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5
wcc = wcc * (b - a) * 0.5
return tcc, wcc
def fejer2_weights(n, a=-1.0, b=1.0):
r"""
Computation of the Fejer quadrature nodes and weights.
This implementation follows
[1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018.
"""
assert n > 2
tcc = np.cos(np.linspace(np.pi, 0, n))
n1 = n - 1
N = np.arange(1, n1, 2)
l = len(N)
m = n1 - l
v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)])
v = 0 - v[:-1] - v[-1:0:-1]
wcc = np.fft.ifft(v).real
wcc = np.concatenate((wcc, wcc[:1]))
# rescale
tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5
wcc = wcc * (b - a) * 0.5
return tcc, wcc
|