File size: 5,987 Bytes
1b34a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import numpy as np


def _precompute_grid(n, grid="equidistant", a=0.0, b=1.0, periodic=False):

    if (grid != "equidistant") and periodic:
        raise ValueError(f"Periodic grid is only supported on equidistant grids.")

    # compute coordinates
    if grid == "equidistant":
        xlg, wlg = trapezoidal_weights(n, a=a, b=b, periodic=periodic)
    elif grid == "legendre-gauss":
        xlg, wlg = legendre_gauss_weights(n, a=a, b=b)
    elif grid == "lobatto":
        xlg, wlg = lobatto_weights(n, a=a, b=b)
    elif grid == "equiangular":
        xlg, wlg = clenshaw_curtiss_weights(n, a=a, b=b)
    else:
        raise ValueError(f"Unknown grid type {grid}")

    return xlg, wlg


def _precompute_latitudes(nlat, grid="equiangular"):
    r"""
    Convenience routine to precompute latitudes
    """

    # compute coordinates
    xlg, wlg = _precompute_grid(nlat, grid=grid, a=-1.0, b=1.0, periodic=False)

    lats = np.flip(np.arccos(xlg)).copy()
    wlg = np.flip(wlg).copy()

    return lats, wlg


def trapezoidal_weights(n, a=-1.0, b=1.0, periodic=False):
    r"""
    Helper routine which returns equidistant nodes with trapezoidal weights
    on the interval [a, b]
    """

    xlg = np.linspace(a, b, n)
    wlg = (b - a) / (n - 1) * np.ones(n)

    if not periodic:
        wlg[0] *= 0.5
        wlg[-1] *= 0.5

    return xlg, wlg


def legendre_gauss_weights(n, a=-1.0, b=1.0):
    r"""
    Helper routine which returns the Legendre-Gauss nodes and weights
    on the interval [a, b]
    """

    xlg, wlg = np.polynomial.legendre.leggauss(n)
    xlg = (b - a) * 0.5 * xlg + (b + a) * 0.5
    wlg = wlg * (b - a) * 0.5

    return xlg, wlg


def lobatto_weights(n, a=-1.0, b=1.0, tol=1e-16, maxiter=100):
    r"""
    Helper routine which returns the Legendre-Gauss-Lobatto nodes and weights
    on the interval [a, b]
    """

    wlg = np.zeros((n,))
    tlg = np.zeros((n,))
    tmp = np.zeros((n,))

    # Vandermonde Matrix
    vdm = np.zeros((n, n))

    # initialize Chebyshev nodes as first guess
    for i in range(n):
        tlg[i] = -np.cos(np.pi * i / (n - 1))

    tmp = 2.0

    for i in range(maxiter):
        tmp = tlg

        vdm[:, 0] = 1.0
        vdm[:, 1] = tlg

        for k in range(2, n):
            vdm[:, k] = (
                (2 * k - 1) * tlg * vdm[:, k - 1] - (k - 1) * vdm[:, k - 2]
            ) / k

        tlg = tmp - (tlg * vdm[:, n - 1] - vdm[:, n - 2]) / (n * vdm[:, n - 1])

        if max(abs(tlg - tmp).flatten()) < tol:
            break

    wlg = 2.0 / ((n * (n - 1)) * (vdm[:, n - 1] ** 2))

    # rescale
    tlg = (b - a) * 0.5 * tlg + (b + a) * 0.5
    wlg = wlg * (b - a) * 0.5

    return tlg, wlg


def clenshaw_curtiss_weights(n, a=-1.0, b=1.0):
    r"""
    Computation of the Clenshaw-Curtis quadrature nodes and weights.
    This implementation follows

    [1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018.
    """

    assert n > 1

    tcc = np.cos(np.linspace(np.pi, 0, n))

    if n == 2:
        wcc = np.array([1.0, 1.0])
    else:

        n1 = n - 1
        N = np.arange(1, n1, 2)
        l = len(N)
        m = n1 - l

        v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)])
        v = 0 - v[:-1] - v[-1:0:-1]

        g0 = -np.ones(n1)
        g0[l] = g0[l] + n1
        g0[m] = g0[m] + n1
        g = g0 / (n1**2 - 1 + (n1 % 2))
        wcc = np.fft.ifft(v + g).real
        wcc = np.concatenate((wcc, wcc[:1]))

    # rescale
    tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5
    wcc = wcc * (b - a) * 0.5

    return tcc, wcc


def fejer2_weights(n, a=-1.0, b=1.0):
    r"""
    Computation of the Fejer quadrature nodes and weights.
    This implementation follows

    [1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018.
    """

    assert n > 2

    tcc = np.cos(np.linspace(np.pi, 0, n))

    n1 = n - 1
    N = np.arange(1, n1, 2)
    l = len(N)
    m = n1 - l

    v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)])
    v = 0 - v[:-1] - v[-1:0:-1]

    wcc = np.fft.ifft(v).real
    wcc = np.concatenate((wcc, wcc[:1]))

    # rescale
    tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5
    wcc = wcc * (b - a) * 0.5

    return tcc, wcc