""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ from typing import List, Optional import torch import torch.fft def fft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor: """ Apply a centered 2-dimensional Fast Fourier Transform (FFT). Parameters ---------- data : torch.Tensor Complex-valued input data containing at least 3 dimensions. Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. norm : str Normalization mode. Refer to `torch.fft.fft` for details on normalization options. Returns ------- torch.Tensor The FFT of the input data. """ if not data.shape[-1] == 2: raise ValueError("Tensor does not have separate complex dim.") data = ifftshift(data, dim=[-3, -2]) data = torch.view_as_real( torch.fft.fftn( # type: ignore torch.view_as_complex(data), dim=(-2, -1), norm=norm ) ) data = fftshift(data, dim=[-3, -2]) return data def ifft2c_new(data: torch.Tensor, norm: str = "ortho") -> torch.Tensor: """ Apply a centered 2-dimensional Inverse Fast Fourier Transform (IFFT). Parameters ---------- data : torch.Tensor Complex-valued input data containing at least 3 dimensions. Dimensions -3 and -2 are spatial dimensions, and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. norm : str Normalization mode. Refer to `torch.fft.ifft` for details on normalization options. Returns ------- torch.Tensor The IFFT of the input data. """ if not data.shape[-1] == 2: raise ValueError("Tensor does not have separate complex dim.") data = ifftshift(data, dim=[-3, -2]) data = torch.view_as_real( torch.fft.ifftn( # type: ignore torch.view_as_complex(data), dim=(-2, -1), norm=norm ) ) data = fftshift(data, dim=[-3, -2]) return data # Helper functions def roll_one_dim(x: torch.Tensor, shift: int, dim: int) -> torch.Tensor: """ Roll a PyTorch tensor along a specified dimension. This function is similar to `torch.roll` but operates on a single dimension. Parameters ---------- x : torch.Tensor The input tensor to be rolled. shift : int Amount to roll. dim : int The dimension along which to roll the tensor. Returns ------- torch.Tensor A tensor with the same shape as `x`, but rolled along the specified dimension. """ shift = shift % x.size(dim) if shift == 0: return x left = x.narrow(dim, 0, x.size(dim) - shift) right = x.narrow(dim, x.size(dim) - shift, shift) return torch.cat((right, left), dim=dim) def roll( x: torch.Tensor, shift: List[int], dim: List[int], ) -> torch.Tensor: """ Similar to np.roll but applies to PyTorch Tensors. Parameters ---------- x : torch.Tensor A PyTorch tensor. shift : int Amount to roll. dim : int Which dimension to roll. Returns ------- torch.Tensor Rolled version of x. """ if len(shift) != len(dim): raise ValueError("len(shift) must match len(dim)") for s, d in zip(shift, dim): x = roll_one_dim(x, s, d) return x def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor: """ Similar to np.fft.fftshift but applies to PyTorch Tensors. Parameters ---------- x : torch.Tensor A PyTorch tensor. dim : list of int, optional Which dimension to apply fftshift. If None, the shift is applied to all dimensions (default is None). Returns ------- torch.Tensor fftshifted version of x. """ if dim is None: # this weird code is necessary for torch.jit.script typing dim = [0] * (x.dim()) for i in range(1, x.dim()): dim[i] = i # also necessary for torch.jit.script shift = [0] * len(dim) for i, dim_num in enumerate(dim): shift[i] = x.shape[dim_num] // 2 return roll(x, shift, dim) def ifftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor: """ Similar to np.fft.ifftshift but applies to PyTorch Tensors. Parameters ---------- x : torch.Tensor A PyTorch tensor. dim : list of int, optional Which dimension to apply ifftshift. If None, the shift is applied to all dimensions (default is None). Returns ------- torch.Tensor ifftshifted version of x. """ if dim is None: # this weird code is necessary for torch.jit.script typing dim = [0] * (x.dim()) for i in range(1, x.dim()): dim[i] = i # also necessary for torch.jit.script shift = [0] * len(dim) for i, dim_num in enumerate(dim): shift[i] = (x.shape[dim_num] + 1) // 2 return roll(x, shift, dim)