Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,608 Bytes
49ffc6c 1ec1f0d 49ffc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from tqdm import tqdm
import gc
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
LORA_CONFIG = {
"None": {
"repo_id": None,
"filename": None,
"type": "edit",
"method": "none",
"prompt_template": "{prompt}",
"description": "Use the base Qwen-Image-Edit model without any LoRA.",
},
"InStyle (Style Transfer)": {
"repo_id": "peteromallet/Qwen-Image-Edit-InStyle",
"filename": "InStyle-0.5.safetensors",
"type": "style",
"method": "manual_fuse",
"prompt_template": "Make an image in this style of {prompt}",
"description": "Transfers the style from a reference image to a new image described by the prompt.",
},
"InScene (In-Scene Editing)": {
"repo_id": "flymy-ai/qwen-image-edit-inscene-lora",
"filename": "flymy_qwen_image_edit_inscene_lora.safetensors",
"type": "edit",
"method": "standard",
"prompt_template": "{prompt}",
"description": "Improves in-scene editing, object positioning, and camera perspective changes.",
},
"Face Segmentation": {
"repo_id": "TsienDragon/qwen-image-edit-lora-face-segmentation",
"filename": "pytorch_lora_weights.safetensors",
"type": "edit",
"method": "standard",
"prompt_template": "change the face to face segmentation mask",
"description": "Transforms a facial image into a precise segmentation mask.",
},
"Object Remover": {
"repo_id": "valiantcat/Qwen-Image-Edit-Remover-General-LoRA",
"filename": "qwen-edit-remover.safetensors",
"type": "edit",
"method": "standard",
"prompt_template": "Remove {prompt}",
"description": "Removes objects from an image while maintaining background consistency.",
},
}
print("Initializing model...")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit",
torch_dtype=dtype
).to(device)
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
original_transformer_state_dict = pipe.transformer.state_dict()
print("Base model loaded and ready.")
def fuse_lora_manual(transformer, lora_state_dict, alpha=1.0):
key_mapping = {}
for key in lora_state_dict.keys():
base_key = key.replace('diffusion_model.', '').rsplit('.lora_', 1)[0]
if base_key not in key_mapping:
key_mapping[base_key] = {}
if 'lora_A' in key:
key_mapping[base_key]['down'] = lora_state_dict[key]
elif 'lora_B' in key:
key_mapping[base_key]['up'] = lora_state_dict[key]
for name, module in tqdm(transformer.named_modules(), desc="Fusing layers"):
if name in key_mapping and isinstance(module, torch.nn.Linear):
lora_weights = key_mapping[name]
if 'down' in lora_weights and 'up' in lora_weights:
device = module.weight.device
dtype = module.weight.dtype
lora_down = lora_weights['down'].to(device, dtype=dtype)
lora_up = lora_weights['up'].to(device, dtype=dtype)
merged_delta = lora_up @ lora_down
module.weight.data += alpha * merged_delta
return transformer
def load_and_fuse_lora(lora_name):
"""Carrega uma LoRA, funde-a ao modelo e retorna o pipeline modificado."""
config = LORA_CONFIG[lora_name]
print("Resetting transformer to original state...")
pipe.transformer.load_state_dict(original_transformer_state_dict)
if config["method"] == "none":
print("No LoRA selected. Using base model.")
return
print(f"Loading LoRA: {lora_name}")
lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"])
if config["method"] == "standard":
print("Using standard loading method...")
pipe.load_lora_weights(lora_path)
print("Fusing LoRA into the model...")
pipe.fuse_lora()
elif config["method"] == "manual_fuse":
print("Using manual fusion method...")
lora_state_dict = load_file(lora_path)
pipe.transformer = fuse_lora_manual(pipe.transformer, lora_state_dict)
gc.collect()
torch.cuda.empty_cache()
print(f"LoRA '{lora_name}' is now active.")
@spaces.GPU(duration=60)
def infer(
lora_name,
input_image,
style_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if not lora_name:
raise gr.Error("Please select a LoRA model.")
config = LORA_CONFIG[lora_name]
if config["type"] == "style":
if style_image is None:
raise gr.Error("Style Transfer LoRA requires a Style Reference Image.")
image_for_pipeline = style_image
else: # 'edit'
if input_image is None:
raise gr.Error("This LoRA requires an Input Image.")
image_for_pipeline = input_image
if not prompt and config["prompt_template"] != "change the face to face segmentation mask":
raise gr.Error("A text prompt is required for this LoRA.")
load_and_fuse_lora(lora_name)
final_prompt = config["prompt_template"].format(prompt=prompt)
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
generator = torch.Generator(device=device).manual_seed(int(seed))
print("--- Running Inference ---")
print(f"LoRA: {lora_name}")
print(f"Prompt: {final_prompt}")
print(f"Seed: {seed}, Steps: {num_inference_steps}, CFG: {true_guidance_scale}")
with torch.inference_mode():
result_image = pipe(
image=image_for_pipeline,
prompt=final_prompt,
negative_prompt=" ",
num_inference_steps=int(num_inference_steps),
generator=generator,
true_cfg_scale=true_guidance_scale,
).images[0]
pipe.unfuse_lora()
gc.collect()
torch.cuda.empty_cache()
return result_image, seed
def on_lora_change(lora_name):
config = LORA_CONFIG[lora_name]
is_style_lora = config["type"] == "style"
return {
lora_description: gr.Markdown(visible=True, value=f"**Description:** {config['description']}"),
input_image_box: gr.Image(visible=not is_style_lora),
style_image_box: gr.Image(visible=is_style_lora),
prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask"))
}
with gr.Blocks(css="#col-container { margin: 0 auto; max-width: 1024px; }") as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" style="width: 400px; margin: 0 auto; display: block;">')
gr.Markdown("<h2 style='text-align: center;'>Qwen-Image-Edit Multi-LoRA Playground</h2>")
with gr.Row():
with gr.Column(scale=1):
lora_selector = gr.Dropdown(
label="Select LoRA Model",
choices=list(LORA_CONFIG.keys()),
value="InStyle (Style Transfer)"
)
lora_description = gr.Markdown(visible=False)
input_image_box = gr.Image(label="Input Image", type="pil", visible=False)
style_image_box = gr.Image(label="Style Reference Image", type="pil", visible=True)
prompt_box = gr.Textbox(label="Prompt", placeholder="Describe the content or object to remove...")
run_button = gr.Button("Generate!", variant="primary")
with gr.Column(scale=1):
result_image = gr.Image(label="Result", type="pil")
used_seed = gr.Number(label="Used Seed", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0)
steps_slider = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=25)
lora_selector.change(
fn=on_lora_change,
inputs=lora_selector,
outputs=[lora_description, input_image_box, style_image_box, prompt_box]
)
demo.load(
fn=on_lora_change,
inputs=lora_selector,
outputs=[lora_description, input_image_box, style_image_box, prompt_box]
)
run_button.click(
fn=infer,
inputs=[
lora_selector,
input_image_box, style_image_box,
prompt_box,
seed_slider, randomize_seed_checkbox,
cfg_slider, steps_slider
],
outputs=[result_image, used_seed]
)
if __name__ == "__main__":
demo.launch() |