Spaces:
Sleeping
Sleeping
import yfinance as yf | |
import datetime | |
import pandas as pd | |
import os | |
def portfolio_data(region: str = "IND"): | |
region = "IND" | |
if region == "IND": | |
portfolio = "/data_ingetion/portfolios/IND.csv" | |
else: | |
portfolio = "/data_ingetion/portfolios/US.csv" | |
pc_file = os.getcwd() + "/data_ingetion/portfolios/portfolio_change.csv" | |
today = datetime.datetime.today().strftime("%Y-%m-%d") | |
portfolio_change = pd.read_csv(pc_file) | |
df = pd.read_csv(os.getcwd() + portfolio) | |
if today not in portfolio_change.columns: | |
pc = [] | |
for ticker in df["Ticker Symbol"]: | |
pc.append(price_change(ticker, 7, True)) | |
portfolio_change[today] = pc | |
portfolio_change.to_csv(pc_file, index=False) | |
df["Price Change%"] = portfolio_change[today] | |
df.drop("Date of Investment", axis=1, inplace=True) | |
return f"Portfolio and change in prices in part 7 days : \n {str(df)}" | |
def price_change(symbol, days: int, raw: bool = False): | |
stock = yf.Ticker(ticker=symbol) | |
today_price = stock.history(period="1d") | |
# Target date: 1 year and 7 days ago | |
target_date = datetime.datetime.today() - datetime.timedelta(days=days) | |
start_date = (target_date - datetime.timedelta(days=5)).strftime("%Y-%m-%d") | |
end_date = (target_date + datetime.timedelta(days=1)).strftime("%Y-%m-%d") | |
# Fetch range around the target date | |
history = stock.history(start=start_date, end=end_date) | |
# Get the latest available price before or on the target date | |
past_price = history[history.index <= target_date.strftime("%Y-%m-%d")].iloc[-1] | |
percentage_difference = ( | |
(today_price["Close"] - past_price["Close"]) / past_price["Close"] | |
).values[0] * 100 | |
response = ( | |
f"Price change for {symbol} in past {days} days is {percentage_difference:.2f}%" | |
) | |
if raw: | |
return percentage_difference | |
return response | |
def earning_summary(symbol): | |
stock = yf.Ticker(ticker=symbol) | |
metrics = [ | |
"EBITDA", | |
"Total Expenses", | |
"Basic EPS", | |
"Net Income", | |
"Gross Profit", | |
"Total Revenue", | |
] | |
currency = stock.fast_info.currency | |
income_metrics = stock.income_stmt | |
scaler = 1e7 if currency == "INR" else 1e6 | |
units = "carore" if currency == "INR" else "millions" | |
selected_metric = income_metrics.loc[metrics] / scaler | |
response = f"Earning metrics for {symbol} are following in {currency} currency in {units}: \n {selected_metric}" | |
return response | |
def get_update(symbol): | |
stock = yf.Ticker(ticker=symbol) | |
data = stock.news | |
news = "" | |
for info in data[:5]: | |
news += info["content"]["title"] + "\n" | |
news += info["content"]["summary"] + "\n\n" | |
pc = price_change(symbol, 7) | |
response = f"Price change for {symbol} in past 7 days is {pc} \n\n NEWS :\n\n{news}" | |
return response | |