File size: 6,241 Bytes
778b022 2473abc 778b022 d679794 778b022 2473abc 778b022 0b756d7 51972c5 0b756d7 9531029 c105e6f 9531029 0b756d7 9531029 c105e6f 9531029 8e07096 9531029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
title: Search Engine LLM App
emoji: π
colorFrom: pink
colorTo: indigo
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
license: mit
short_description: This app allows you to chat with an LLM that can search web.
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# Search Engine LLM App
## Overview
This application is a powerful research assistant built with Langchain that can search across multiple knowledge sources including Wikipedia, arXiv, and the web via DuckDuckGo. It leverages Groq's LLM capabilities to provide intelligent, context-aware responses to user queries.
## Live Demo
Try the application live at: [Hugging Face Spaces](https://huggingface.co/spaces/ashutoshchoudhari/Search-Engine-LLM-app)
## Features
- **Multi-source search**: Access information from Wikipedia, arXiv scientific papers, and web results
- **Conversational memory**: Retains context from previous interactions
- **Streaming responses**: See the AI's response generated in real-time
- **User-friendly interface**: Clean Streamlit UI for easy interaction
## Technical Components
- **LLM**: Groq's Llama3-8b-8192 model (with fallback support for Ollama models)
- **Embeddings**: Hugging Face's all-MiniLM-L6-v2
- **Search Tools**:
- Wikipedia API
- arXiv API
- DuckDuckGo Search
- **Framework**: Langchain for agent orchestration
- **Frontend**: Streamlit
## Project Structure
- **app.py**: Main application file containing the Streamlit UI and Langchain integration
- **requirements.txt**: Dependencies required to run the application
- **README.md**: Project metadata and description for Hugging Face Spaces
- **tools_agents.ipynb**: Jupyter notebook demonstrating how to use Langchain tools and agents
- **.github/workflows/main.yaml**: GitHub Actions workflow for deploying to Hugging Face Spaces
- **.gitattributes**: Git LFS configuration for handling large files
- **.gitignore**: Standard Python gitignore file
- **LICENSE**: MIT License file
- **app_documentation.md**: This comprehensive documentation file
## Implementation Details
### LLM Integration
The application uses Groq's API to access the Llama3-8b-8192 model with streaming capability:
```python
llm = ChatGroq(
groq_api_key = st.session_state.api_key,
model_name = "Llama3-8b-8192",
streaming = True
)
```
Alternative local models can also be configured with Ollama:
```python
#llm = ChatOllama(base_url=OLLAMA_WSL_IP, model="llama3.1", streaming=True)
```
### Search Tools Configuration
The app configures three primary search tools:
1. **Wikipedia Search**:
```python
api_wrapper_wiki = WikipediaAPIWrapper(top_k_results = 3, doc_content_chars_max=10000)
wiki = WikipediaQueryRun(api_wrapper=api_wrapper_wiki)
wiki_tool= Tool(
name = "Wikipedia",
func = wiki.run,
description = "This tool uses the Wikipedia API to search for a topic."
)
```
2. **arXiv Search**:
```python
api_wrapper_arxiv = ArxivAPIWrapper(top_k_results = 5, doc_content_chars_max=10000)
arxiv = ArxivQueryRun(api_wrapper=api_wrapper_arxiv)
arxiv_tool = Tool(
name = "arxiv",
func = arxiv.run,
description = "Searches arXiv for papers matching the query.",
)
```
3. **DuckDuckGo Web Search**:
```python
api_wrapper_ddg = DuckDuckGoSearchAPIWrapper(region="us-en", time="y", max_results=10)
ddg = DuckDuckGoSearchResults(
api_wrapper=api_wrapper_ddg,
output_format="string",
handle_tool_error=True,
handle_validation_error=True)
ddg_tool = Tool(
name = "DuckDuckGo_Search",
func = ddg.run,
description = "Searches for search queries using the DuckDuckGo Search engine."
)
```
### Agent Configuration
The system uses the CHAT_CONVERSATIONAL_REACT_DESCRIPTION agent type with a conversational memory buffer:
```python
memory = ConversationBufferWindowMemory(k=5, memory_key="chat_history", return_messages=True)
search_agent = initialize_agent(
tools = tools,
llm = llm,
agent = AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
max_iterations = 10,
memory = memory,
handle_parsing_errors = True)
```
## Setup Requirements
1. Groq API key
2. Hugging Face token (for embeddings)
3. Python environment with required dependencies
## Installation Instructions
Install the required packages using:
```bash
pip install -r requirements.txt
```
Required packages include:
- arxiv
- wikipedia
- langchain, langchain-community, langchain-huggingface, langchain-groq
- openai
- duckduckgo-search
- ollama, langchain-ollama (for local model support)
## Environment Variables
Create a `.env` file with the following variables:
```
GROQ_API_KEY=your_groq_api_key_here
HF_TOKEN=your_huggingface_token_here
```
## Usage
1. Start the application using Streamlit:
```bash
streamlit run app.py
```
2. Enter your Groq API key in the sidebar when prompted
3. Type your research question in the chat input box
4. The agent will search across available sources and provide a comprehensive response
5. Your conversation history will be maintained throughout the session
## Example Queries
- "What are the latest developments in quantum computing?"
- "Explain the concept of transformer models in NLP"
- "What were the key findings from the recent climate change report?"
- "Tell me about the history and applications of reinforcement learning"
## Deployment
This project is configured to deploy to Hugging Face Spaces using GitHub Actions. The workflow in `.github/workflows/main.yaml` automatically syncs the repository to Hugging Face when changes are pushed to the main branch.
### Live Application
The app is currently deployed and accessible at: [Hugging Face Spaces](https://huggingface.co/spaces/ashutoshchoudhari/Search-Engine-LLM-app)
### Local Development
For local development, you can use:
```bash
streamlit run app.py
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Langchain for providing the agent and tool framework
- Groq for the LLM API access
- Hugging Face for embeddings and hosting capabilities
## Contributing
Contributions, issues, and feature requests are welcome. Feel free to check issues page if you want to contribute. |