Spaces:
Running
on
Zero
Running
on
Zero
| #===================================================================== | |
| # https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator | |
| #===================================================================== | |
| import os.path | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| torch.set_float32_matmul_precision('medium') | |
| torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
| torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_cudnn_sdp(True) | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| import gradio as gr | |
| from x_transformer_1_23_2 import * | |
| import random | |
| import tqdm | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| import TMIDIX | |
| import matplotlib.pyplot as plt | |
| from sklearn.metrics import pairwise | |
| # ================================================================================================= | |
| def hsv_to_rgb(h, s, v): | |
| if s == 0.0: | |
| return v, v, v | |
| i = int(h*6.0) | |
| f = (h*6.0) - i | |
| p = v*(1.0 - s) | |
| q = v*(1.0 - s*f) | |
| t = v*(1.0 - s*(1.0-f)) | |
| i = i%6 | |
| return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] | |
| def generate_colors(n): | |
| return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] | |
| def add_arrays(a, b): | |
| return [sum(pair) for pair in zip(a, b)] | |
| def plot_ms_SONG(ms_song, | |
| preview_length_in_notes=0, | |
| block_lines_times_list = None, | |
| plot_title='ms Song', | |
| max_num_colors=129, | |
| drums_color_num=128, | |
| plot_size=(11,4), | |
| note_height = 0.75, | |
| show_grid_lines=False, | |
| return_plt = False, | |
| timings_multiplier=1, | |
| plot_curve_values=None, | |
| plot_curve_notes_step=200, | |
| save_plot='' | |
| ): | |
| '''Tegridy ms SONG plotter/vizualizer''' | |
| notes = [s for s in ms_song if s[0] == 'note'] | |
| if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): | |
| print('The song notes do not have patches information') | |
| print('Please add patches to the notes in the song') | |
| else: | |
| start_times = [(s[1] * timings_multiplier) / 1000 for s in notes] | |
| durations = [(s[2] * timings_multiplier) / 1000 for s in notes] | |
| pitches = [s[4] for s in notes] | |
| patches = [s[6] for s in notes] | |
| colors = generate_colors(max_num_colors) | |
| colors[drums_color_num] = (1, 1, 1) | |
| pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000 | |
| fig, ax = plt.subplots(figsize=plot_size) | |
| # Create a rectangle for each note with color based on patch number | |
| for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): | |
| rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) | |
| ax.add_patch(rect) | |
| if plot_curve_values is not None: | |
| stimes = start_times[plot_curve_notes_step // 2::plot_curve_notes_step] | |
| min_val = min(plot_curve_values) | |
| max_val = max(plot_curve_values) | |
| spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values] | |
| ax.plot(stimes, spcva, marker='o', linestyle='-', color='w') | |
| # Set the limits of the plot | |
| ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) | |
| ax.set_ylim([min(spcva), max(spcva)]) | |
| # Set the background color to black | |
| ax.set_facecolor('black') | |
| fig.patch.set_facecolor('white') | |
| if preview_length_in_notes > 0: | |
| ax.axvline(x=pbl, c='white') | |
| if block_lines_times_list: | |
| for bl in block_lines_times_list: | |
| ax.axvline(x=bl, c='white') | |
| if show_grid_lines: | |
| ax.grid(color='white') | |
| plt.xlabel('Time (s)', c='black') | |
| plt.ylabel('MIDI Pitch', c='black') | |
| plt.title(plot_title) | |
| if return_plt: | |
| return fig | |
| if save_plot == '': | |
| plt.show() | |
| else: | |
| plt.savefig(save_plot) | |
| # ================================================================================================= | |
| def read_MIDI(input_midi): | |
| #=============================================================================== | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
| #=============================================================================== | |
| # Enhanced score notes | |
| events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
| #======================================================= | |
| # PRE-PROCESSING | |
| instruments_list = list(set([y[3] for y in events_matrix1])) | |
| #====================================== | |
| events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16) | |
| #======================================================= | |
| # FINAL PROCESSING | |
| melody_chords = [] | |
| melody_chords2 = [] | |
| # Break between compositions / Intro seq | |
| if 9 in instruments_list: | |
| drums_present = 19331 # Yes | |
| else: | |
| drums_present = 19330 # No | |
| if events_matrix1[0][3] != 9: | |
| pat = events_matrix1[0][6] | |
| else: | |
| pat = 128 | |
| melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq | |
| #======================================================= | |
| # MAIN PROCESSING CYCLE | |
| #======================================================= | |
| abs_time = 0 | |
| pbar_time = 0 | |
| pe = events_matrix1[0] | |
| chords_counter = 1 | |
| comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) | |
| for e in events_matrix1: | |
| #======================================================= | |
| # Timings... | |
| # Cliping all values... | |
| delta_time = max(0, min(255, e[1]-pe[1])) | |
| # Durations and channels | |
| dur = max(0, min(255, e[2])) | |
| cha = max(0, min(15, e[3])) | |
| # Patches | |
| if cha == 9: # Drums patch will be == 128 | |
| pat = 128 | |
| else: | |
| pat = e[6] | |
| # Pitches | |
| ptc = max(1, min(127, e[4])) | |
| # Velocities | |
| # Calculating octo-velocity | |
| vel = max(8, min(127, e[5])) | |
| velocity = round(vel / 15)-1 | |
| #======================================================= | |
| # FINAL NOTE SEQ | |
| # Writing final note asynchronously | |
| dur_vel = (8 * dur) + velocity | |
| pat_ptc = (129 * pat) + ptc | |
| melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) | |
| melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) | |
| pe = e | |
| return melody_chords, melody_chords2 | |
| # ================================================================================================= | |
| def tokens_to_MIDI(tokens, MIDI_name): | |
| print('Rendering results...') | |
| print('=' * 70) | |
| print('Sample INTs', tokens[:12]) | |
| print('=' * 70) | |
| if len(tokens) != 0: | |
| song = tokens | |
| song_f = [] | |
| time = 0 | |
| dur = 0 | |
| vel = 90 | |
| pitch = 0 | |
| channel = 0 | |
| patches = [-1] * 16 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| for ss in song: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 2304: | |
| dur = ((ss-256) // 8) * 16 | |
| vel = (((ss-256) % 8)+1) * 15 | |
| if 2304 <= ss < 18945: | |
| patch = (ss-2304) // 129 | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| pitch = (ss-2304) % 129 | |
| song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
| patches = [0 if x==-1 else x for x in patches] | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
| output_signature = 'Intelligent MIDI Comparator', | |
| output_file_name = MIDI_name, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| new_fn = MIDI_name+'.mid' | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=soundfont, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| return new_fn, song_f, audio | |
| # ================================================================================================= | |
| print('Loading model...') | |
| SEQ_LEN = 8192 # Models seq len | |
| PAD_IDX = 19463 # Models pad index | |
| DEVICE = 'cuda' # 'cuda' | |
| # instantiate the model | |
| model = TransformerWrapper( | |
| num_tokens = PAD_IDX+1, | |
| max_seq_len = SEQ_LEN, | |
| attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', | |
| filename='Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' | |
| ) | |
| model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) | |
| print('=' * 70) | |
| # ================================================================================================= | |
| def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap): | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| model.to(DEVICE) | |
| model.eval() | |
| if DEVICE == 'cpu': | |
| dtype = torch.bfloat16 | |
| else: | |
| dtype = torch.bfloat16 | |
| ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
| print('Done!') | |
| print('=' * 70) | |
| sfn = os.path.basename(input_src_midi.name) | |
| sfn1 = sfn.split('.')[0] | |
| tfn = os.path.basename(input_trg_midi.name) | |
| tfn1 = tfn.split('.')[0] | |
| print('-' * 70) | |
| print('Input src MIDI name:', sfn) | |
| print('Input trg MIDI name:', tfn) | |
| print('Req sampling resolution:', input_sampling_resolution) | |
| print('Req sampling overlap:', input_sampling_overlap) | |
| print('-' * 70) | |
| #=============================================================================== | |
| print('Loading MIDIs...') | |
| src_tokens, src_notes = read_MIDI(input_src_midi.name) | |
| trg_tokens, trg_notes = read_MIDI(input_trg_midi.name) | |
| #================================================================== | |
| print('=' * 70) | |
| print('Number of src tokens:', len(src_tokens)) | |
| print('Number of src notes:', len(src_notes)) | |
| print('Number of trg tokens:', len(trg_tokens)) | |
| print('Number of trg notes:', len(trg_notes)) | |
| #========================================================================== | |
| print('=' * 70) | |
| print('Comparing...') | |
| print('=' * 70) | |
| print('Giant Music Transformer MIDI Comparator') | |
| print('=' * 70) | |
| sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3 | |
| sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3 | |
| comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution | |
| input_src_tokens = src_tokens[:comp_length] | |
| input_trg_tokens = trg_tokens[:comp_length] | |
| comp_cos_sims = [] | |
| # torch.cuda.empty_cache() | |
| for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)): | |
| inp = [input_src_tokens[i:i+sampling_resolution]] | |
| inp = torch.LongTensor(inp).to(DEVICE) | |
| with ctx: | |
| with torch.no_grad(): | |
| out = model(inp) | |
| cache = out[2] | |
| src_embedings = cache.layer_hiddens[-1] | |
| inp = [input_trg_tokens[i:i+sampling_resolution]] | |
| inp = torch.LongTensor(inp).to(DEVICE) | |
| with ctx: | |
| with torch.no_grad(): | |
| out = model(inp) | |
| cache = out[2] | |
| trg_embedings = cache.layer_hiddens[-1] | |
| cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()], | |
| [trg_embedings.cpu().detach().numpy()[0].flatten()] | |
| ).tolist()[0][0] | |
| comp_cos_sims.append(cos_sim) | |
| output_min_sim = min(comp_cos_sims) | |
| output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims) | |
| output_max_sim = max(comp_cos_sims) | |
| print('Min sim:', output_min_sim) | |
| print('Avg sim:', output_avg_sim) | |
| print('max sim:', output_max_sim) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('Rendering results...') | |
| sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1) | |
| tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1) | |
| #======================================================== | |
| output_src_audio = (16000, saudio) | |
| output_src_plot = plot_ms_SONG(ssong_f, | |
| plot_title=sfn1, | |
| plot_curve_values=comp_cos_sims, | |
| plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, | |
| return_plt=True | |
| ) | |
| output_trg_audio = (16000, taudio) | |
| output_trg_plot = plot_ms_SONG(tsong_f, | |
| plot_title=tfn1, | |
| plot_curve_values=comp_cos_sims, | |
| plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, | |
| return_plt=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| #======================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim | |
| # ================================================================================================= | |
| if __name__ == "__main__": | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>") | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>") | |
| gr.Markdown( | |
| "\n\n" | |
| "This is a demo for the Giant Music Transformer\n\n" | |
| "Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" | |
| " for all features, faster execution and endless generation" | |
| ) | |
| gr.Markdown("## Upload your MIDIs or select a sample example below") | |
| gr.Markdown("## Upload source MIDI") | |
| input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| gr.Markdown("## Upload target MIDI") | |
| input_trg_midi = gr.File(label="Target MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| gr.Markdown("### Make sure that the MIDI has at least sampling resolution number of notes") | |
| input_sampling_resolution = gr.Slider(50, 2000, value=50, step=10, label="Sampling resolution in notes") | |
| gr.Markdown("### Make sure that the sampling overlap value is less than sampling resolution value") | |
| input_sampling_overlap = gr.Slider(0, 1000, value=0, step=10, label="Sampling overlap in notes") | |
| run_btn = gr.Button("compare", variant="primary") | |
| gr.Markdown("## MIDI comparison results") | |
| output_min_sim = gr.Number(label="Minimum similarity") | |
| output_avg_sim = gr.Number(label="Average similarity") | |
| output_max_sim = gr.Number(label="Maximum similarity") | |
| output_src_audio = gr.Audio(label="Source MIDI audio", format="mp3", elem_id="midi_audio") | |
| output_src_plot = gr.Plot(label="Source MIDI plot") | |
| output_trg_audio = gr.Audio(label="Target MIDI audio", format="mp3", elem_id="midi_audio") | |
| output_trg_plot = gr.Plot(label="Target MIDI plot") | |
| run_event = run_btn.click(CompareMIDIs, [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], | |
| [output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim]) | |
| gr.Examples( | |
| [ | |
| ["Honesty.kar", "Hotel California.mid", 200, 0], | |
| ["House Of The Rising Sun.mid", "Nothing Else Matters.kar", 200, 0], | |
| ["Deep Relaxation Melody #6.mid", "Deep Relaxation Melody #8.mid", 200, 0], | |
| ["I Just Called To Say I Love You.mid", "Sharing The Night Together.kar", 200, 0], | |
| ], | |
| [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], | |
| [output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim], | |
| CompareMIDIs | |
| ) | |
| app.queue().launch() |