File size: 6,238 Bytes
ef4a6ad
 
 
 
 
 
 
 
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---

title: GATE_Motion_Analysis
app_file: app.py
sdk: gradio
sdk_version: 5.12.0
---

# GATE Motion Analysis - Gradio Deployment

## βœ… Error Fixes Applied

This deployment addresses the following errors that were encountered:

### 1. Browser Feature Policy Warnings (Fixed)
- **Error**: `Unrecognized feature: 'ambient-light-sensor'`, `'battery'`, etc.
- **Fix**: Added `analytics_enabled=False` to disable Google Analytics tracking that causes these warnings

### 2. Font Loading Issues (Fixed)
- **Error**: `ui-sans-serif-Regular.woff2:1 Failed to load resource: 404`
- **Fix**: Set `favicon_path=None` and removed custom font dependencies

### 3. API Errors (Fixed)
- **Error**: `Submit function encountered an error: Error: No API found`
- **Fix**: 
  - Simplified interface with proper Gradio component setup
  - Disabled API documentation (`show_api=False`)
  - Added proper error handling and fallback configurations

### 4. JavaScript Errors (Fixed)
- **Error**: `MutationObserver: parameter 1 is not of type 'Node'`
- **Fix**: Removed complex dependencies and iframe conflicts

## πŸš€ Quick Start

### Local Development
```bash

cd gradio_deployment

pip install -r requirements.txt

python app.py

```

### HuggingFace Spaces Deployment
1. Upload all files in `gradio_deployment/` folder to your Space
2. Set the following environment variables (optional):
   - `DEBUG_MODE=true` for verbose logging
   - `USE_GPU=true` if GPU is available

## πŸ“‹ Features

- **Image Analysis**: Upload exercise photos for form analysis
- **Video Analysis**: Upload exercise videos (processes first frame)
- **Multiple Exercises**: Support for squats, push-ups, lunges, bicep curls, deadlifts
- **Real-time Feedback**: Instant form scoring and recommendations
- **System Monitoring**: Built-in system status and debugging tools

## πŸ› οΈ Configuration

The deployment is configured via `config.py`:

- **Performance**: Limited to 4 threads and 10 concurrent users
- **File Limits**: Maximum 50MB upload size
- **Security**: CORS enabled, SSL verification disabled for development
- **UI Theme**: Soft theme with custom CSS styling

## πŸ“± Usage

1. **Select Analysis Type**: Choose between Image or Video analysis
2. **Upload File**: Drag and drop or click to upload exercise media
3. **Select Exercise**: Choose the exercise type from dropdown
4. **View Results**: See analyzed image with confidence score and feedback

## πŸ”§ Technical Details

### Dependencies
- **Gradio 4.0+**: Web interface framework
- **OpenCV**: Image/video processing (headless version for deployment)
- **NumPy**: Numerical computations
- **Pillow**: Image handling

### Architecture
- **Simplified Design**: Removed complex ML dependencies for stability
- **Error Resilience**: Comprehensive error handling and fallbacks
- **Resource Management**: Memory and thread limits for shared environments

## πŸ› Troubleshooting

### Common Issues

1. **Import Errors**
   - All complex dependencies removed
   - Self-contained deployment with minimal requirements

2. **API Connection Issues**
   - Added fallback launch configuration
   - Disabled problematic features (share, API docs)

3. **Performance Issues**
   - Enabled queuing system
   - Limited concurrent users and threads

### Debug Mode
Enable debug mode by setting `DEBUG_MODE=true` environment variable for detailed logging.

## πŸ“ Notes

- This is a **demonstration version** focused on deployment stability
- For full ML functionality, additional models and dependencies would be required
- The current version provides mock analysis results to ensure interface functionality
- All reported browser and API errors have been addressed

## πŸ”„ Changelog

### Version 2.0.0
- βœ… Fixed all reported Gradio deployment errors
- βœ… Simplified dependencies and removed complex imports
- βœ… Added comprehensive error handling
- βœ… Optimized for HuggingFace Spaces deployment
- βœ… Improved UI with proper CSS and theming

## Quick Deployment

### Option 1: Gradio Deploy (Recommended)

```bash

# From this directory

gradio deploy



# Follow the prompts to deploy to Hugging Face Spaces

```

### Option 2: Local Testing

```bash

# Install dependencies

pip install -r requirements.txt



# Run locally

python app.py

```

## Performance Optimisations

- **GPU Memory Management**: Configured for shared GPU environments
- **Model Selection**: Uses lightweight fallback models for faster inference
- **Streaming Settings**: Optimised for 30 FPS real-time analysis
- **Thread Limiting**: Prevents resource exhaustion on shared hardware

## Features

- Real-time pose detection with skeleton overlay
- Motion similarity analysis using BPE (Body Part Embedding)
- British English interface without emoji distractions
- GPU acceleration for YOLOv8 pose detection
- Fallback to MediaPipe for CPU environments

## Deployment Requirements

- **GPU**: CUDA-compatible GPU with 4GB+ VRAM recommended
- **CPU**: 4+ cores for fallback mode
- **RAM**: 8GB+ system memory
- **Python**: 3.8+ with pip

## Configuration

The app automatically detects available hardware and optimises accordingly:

- **GPU Available**: Uses YOLOv8 for high-performance pose detection
- **CPU Only**: Falls back to MediaPipe for stable operation

## Troubleshooting

1. **GPU Memory Issues**: Reduce batch size or use CPU fallback
2. **Import Errors**: Ensure all dependencies are installed
3. **Performance Issues**: Check CUDA installation and GPU memory

## Security

- API endpoints disabled for public deployment
- File access restricted to safe directories
- No authentication required for demo purposes

## GPU Requirements

- **Minimum**: 4GB VRAM
- **Recommended**: 8GB+ VRAM (RTX 3070 or better)
- **Optimal**: 16GB+ VRAM (RTX 4080/4090)

## Browser Compatibility

- Chrome 88+ (recommended)
- Firefox 85+
- Safari 14+
- Edge 88+

## Deployment Notes

When deploying to Hugging Face Spaces:
1. Select GPU (T4 or better) for optimal performance
2. Enable persistence for model caching
3. Set timeout to 30+ minutes for complex analyses