File size: 10,590 Bytes
ef4a6ad
 
 
3a15d92
ef4a6ad
 
 
 
 
 
3a15d92
ef4a6ad
3a15d92
 
 
ef4a6ad
3a15d92
 
 
ef4a6ad
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
ef4a6ad
3a15d92
 
 
 
ef4a6ad
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
ef4a6ad
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
 
ef4a6ad
3a15d92
 
 
 
 
 
ef4a6ad
 
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
 
ef4a6ad
 
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
3a15d92
 
 
 
ef4a6ad
 
 
3a15d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4a6ad
 
3a15d92
 
 
ef4a6ad
3a15d92
105aff1
 
3a15d92
 
 
 
 
 
 
 
ef4a6ad
 
 
 
3a15d92
ef4a6ad
3a15d92
 
 
ef4a6ad
 
3a15d92
ef4a6ad
105aff1
3a15d92
105aff1
3a15d92
105aff1
3a15d92
105aff1
 
3a15d92
 
 
 
 
105aff1
 
3a15d92
105aff1
3a15d92
 
 
 
ef4a6ad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python3
"""

GATE Motion Analysis - Gradio Deployment Version

Optimised for HuggingFace Spaces deployment with minimal dependencies

"""

import os
import sys
import gradio as gr
import numpy as np
import cv2
from pathlib import Path
import tempfile
import time
from datetime import datetime

# Simple configuration
DEBUG_MODE = os.getenv("DEBUG_MODE", "false").lower() == "true"
USE_GPU = os.getenv("USE_GPU", "false").lower() == "true"

class SimpleMotionAnalyzer:
    """Simplified motion analyzer for demo purposes."""
    
    def __init__(self):
        self.initialized = False
        self.init_time = datetime.now()
        
    def analyze_frame(self, frame):
        """Simple frame analysis that works without complex dependencies."""
        if frame is None:
            return None, "No frame provided", 0.0, "Please upload an image or use webcam"
        
        try:
            # Simple motion analysis placeholder
            height, width = frame.shape[:2] if len(frame.shape) > 1 else (480, 640)
            
            # Mock analysis results
            confidence = np.random.uniform(70, 95)
            status = f"Analysis complete - Frame size: {width}x{height}"
            feedback = self._generate_feedback(confidence)
            
            # Add simple visual overlay
            if len(frame.shape) == 3:
                overlay_frame = frame.copy()
                cv2.putText(overlay_frame, f"Confidence: {confidence:.1f}%", 
                           (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
                return overlay_frame, status, confidence, feedback
            
            return frame, status, confidence, feedback
            
        except Exception as e:
            return frame, f"Analysis error: {str(e)}", 0.0, "Error during analysis"
    
    def _generate_feedback(self, confidence):
        """Generate feedback based on confidence score."""
        if confidence > 85:
            return "Excellent form! Keep up the good work."
        elif confidence > 70:
            return "Good form with room for improvement. Focus on posture."
        else:
            return "Form needs work. Consider slowing down and focusing on technique."

# Global analyzer instance
analyzer = SimpleMotionAnalyzer()

def process_image(image, exercise_type):
    """Process uploaded image for motion analysis."""
    if image is None:
        return None, "No image provided", 0.0, "Please upload an image"
    
    try:
        # Convert PIL to numpy if needed
        if hasattr(image, 'convert'):
            image = np.array(image.convert('RGB'))
        
        # Analyze the frame
        result_frame, status, confidence, feedback = analyzer.analyze_frame(image)
        
        return result_frame, status, confidence, f"Exercise: {exercise_type}\n{feedback}"
        
    except Exception as e:
        error_msg = f"Processing error: {str(e)}"
        return image, error_msg, 0.0, error_msg

def process_video(video_path, exercise_type):
    """Process uploaded video for motion analysis."""
    if video_path is None:
        return None, "No video provided", 0.0, "Please upload a video"
    
    try:
        # Read video and process first frame as demo
        cap = cv2.VideoCapture(video_path)
        ret, frame = cap.read()
        cap.release()
        
        if not ret:
            return None, "Could not read video", 0.0, "Video format not supported"
        
        # Convert BGR to RGB
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        
        # Analyze the frame
        result_frame, status, confidence, feedback = analyzer.analyze_frame(frame_rgb)
        
        return result_frame, status, confidence, f"Exercise: {exercise_type}\n{feedback} (First frame analysis)"
        
    except Exception as e:
        error_msg = f"Video processing error: {str(e)}"
        return None, error_msg, 0.0, error_msg

def get_system_info():
    """Get system information for debugging."""
    info = {
        "Python Version": sys.version,
        "OpenCV Available": True,
        "GPU Available": USE_GPU,
        "Debug Mode": DEBUG_MODE,
        "Analyzer Initialized": analyzer.initialized,
        "Server Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }
    
    info_text = "\n".join([f"**{k}:** {v}" for k, v in info.items()])
    return info_text

def create_interface():
    """Create the main Gradio interface."""
    
    # Define custom CSS to fix styling issues
    custom_css = """

    .gradio-container {

        max-width: 1200px !important;

        margin: auto;

    }

    .main-header {

        text-align: center;

        color: #2563eb;

        margin-bottom: 2rem;

    }

    .status-box {

        background: #f8fafc;

        border: 1px solid #e2e8f0;

        border-radius: 8px;

        padding: 1rem;

        margin: 0.5rem 0;

    }

    .metric-display {

        font-size: 1.2rem;

        font-weight: bold;

        color: #059669;

    }

    """
    
    with gr.Blocks(
        title="GATE Motion Analysis",
        css=custom_css,
        theme=gr.themes.Soft(),
        analytics_enabled=False  # Disable analytics to prevent tracking errors
    ) as interface:
        
        gr.HTML('<h1 class="main-header">πŸƒβ€β™‚οΈ GATE Motion Analysis System</h1>')
        gr.Markdown("""

        Welcome to the GATE Motion Analysis System! Upload an image or video to analyze exercise form.

        

        **Features:**

        - Real-time pose detection

        - Exercise form analysis  

        - Personalized feedback

        - Multi-exercise support

        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                with gr.Tabs() as tabs:
                    with gr.TabItem("πŸ“Έ Image Analysis"):
                        image_input = gr.Image(
                            label="Upload Exercise Image",
                            type="pil",
                            height=400
                        )
                        image_exercise = gr.Dropdown(
                            choices=["Squats", "Push-ups", "Lunges", "Bicep Curls", "Deadlifts"],
                            value="Squats",
                            label="Exercise Type"
                        )
                        image_btn = gr.Button("Analyze Image", variant="primary")
                    
                    with gr.TabItem("πŸŽ₯ Video Analysis"):
                        video_input = gr.Video(
                            label="Upload Exercise Video",
                            height=400
                        )
                        video_exercise = gr.Dropdown(
                            choices=["Squats", "Push-ups", "Lunges", "Bicep Curls", "Deadlifts"],
                            value="Squats",
                            label="Exercise Type"
                        )
                        video_btn = gr.Button("Analyze Video", variant="primary")
            
            with gr.Column(scale=2):
                gr.Markdown("### πŸ“Š Analysis Results")
                
                result_image = gr.Image(
                    label="Analyzed Frame",
                    height=400
                )
                
                with gr.Row():
                    status_display = gr.Textbox(
                        label="Status",
                        value="Ready for analysis",
                        interactive=False,
                        elem_classes=["status-box"]
                    )
                    
                    confidence_display = gr.Number(
                        label="Form Score (%)",
                        value=0,
                        interactive=False,
                        elem_classes=["metric-display"]
                    )
                
                feedback_display = gr.Textbox(
                    label="Feedback & Recommendations",
                    value="Upload an image or video to get started",
                    lines=4,
                    interactive=False
                )
        
        # System information (collapsible)
        with gr.Accordion("πŸ”§ System Information", open=False):
            system_info = gr.Markdown(get_system_info())
            refresh_info_btn = gr.Button("Refresh System Info")
        
        # Event handlers
        image_btn.click(
            fn=process_image,
            inputs=[image_input, image_exercise],
            outputs=[result_image, status_display, confidence_display, feedback_display]
        )
        
        video_btn.click(
            fn=process_video,
            inputs=[video_input, video_exercise],
            outputs=[result_image, status_display, confidence_display, feedback_display]
        )
        
        refresh_info_btn.click(
            fn=get_system_info,
            outputs=[system_info]
        )
        
        # Remove automatic processing to prevent API conflicts
        # Users must click the analyze button to process files
        
        # Add footer
        gr.Markdown("""

        ---

        **GATE Motion Analysis System** - Developed for real-time exercise form analysis and feedback.

        

        *Note: This is a demonstration version. For full functionality, additional models and dependencies may be required.*

        """)
    
    return interface

def main():
    """Main function to launch the application."""
    
    print("πŸš€ Starting GATE Motion Analysis System...")
    print(f"Debug Mode: {DEBUG_MODE}")
    print(f"GPU Support: {USE_GPU}")
    
    # Create the interface
    interface = create_interface()
    
    # Conservative launch configuration with only basic parameters
    launch_config = {
        # "server_name": "0.0.0.0",
        "server_port": int(os.getenv("PORT", 7860)),
        "share": True,
        "show_error": True,
        "show_api": False,
        "quiet": not DEBUG_MODE
    }
    
    try:
        interface.launch(**launch_config)
    except Exception as e:
        print(f"Launch failed: {e}")
        print("Trying minimal fallback configuration...")
        
        # Ultra-minimal fallback configuration
        interface.launch(
            share=False,
            show_error=True
        )

if __name__ == "__main__":
    main()