#!/usr/bin/env python3 """ GATE Motion Analysis - Gradio Deployment Version Optimised for HuggingFace Spaces deployment with minimal dependencies """ import os import sys import gradio as gr import numpy as np import cv2 from pathlib import Path import tempfile import time from datetime import datetime # Simple configuration DEBUG_MODE = os.getenv("DEBUG_MODE", "false").lower() == "true" USE_GPU = os.getenv("USE_GPU", "false").lower() == "true" class SimpleMotionAnalyzer: """Simplified motion analyzer for demo purposes.""" def __init__(self): self.initialized = False self.init_time = datetime.now() def analyze_frame(self, frame): """Simple frame analysis that works without complex dependencies.""" if frame is None: return None, "No frame provided", 0.0, "Please upload an image or use webcam" try: # Simple motion analysis placeholder height, width = frame.shape[:2] if len(frame.shape) > 1 else (480, 640) # Mock analysis results confidence = np.random.uniform(70, 95) status = f"Analysis complete - Frame size: {width}x{height}" feedback = self._generate_feedback(confidence) # Add simple visual overlay if len(frame.shape) == 3: overlay_frame = frame.copy() cv2.putText(overlay_frame, f"Confidence: {confidence:.1f}%", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) return overlay_frame, status, confidence, feedback return frame, status, confidence, feedback except Exception as e: return frame, f"Analysis error: {str(e)}", 0.0, "Error during analysis" def _generate_feedback(self, confidence): """Generate feedback based on confidence score.""" if confidence > 85: return "Excellent form! Keep up the good work." elif confidence > 70: return "Good form with room for improvement. Focus on posture." else: return "Form needs work. Consider slowing down and focusing on technique." # Global analyzer instance analyzer = SimpleMotionAnalyzer() def process_image(image, exercise_type): """Process uploaded image for motion analysis.""" if image is None: return None, "No image provided", 0.0, "Please upload an image" try: # Convert PIL to numpy if needed if hasattr(image, 'convert'): image = np.array(image.convert('RGB')) # Analyze the frame result_frame, status, confidence, feedback = analyzer.analyze_frame(image) return result_frame, status, confidence, f"Exercise: {exercise_type}\n{feedback}" except Exception as e: error_msg = f"Processing error: {str(e)}" return image, error_msg, 0.0, error_msg def process_video(video_path, exercise_type): """Process uploaded video for motion analysis.""" if video_path is None: return None, "No video provided", 0.0, "Please upload a video" try: # Read video and process first frame as demo cap = cv2.VideoCapture(video_path) ret, frame = cap.read() cap.release() if not ret: return None, "Could not read video", 0.0, "Video format not supported" # Convert BGR to RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Analyze the frame result_frame, status, confidence, feedback = analyzer.analyze_frame(frame_rgb) return result_frame, status, confidence, f"Exercise: {exercise_type}\n{feedback} (First frame analysis)" except Exception as e: error_msg = f"Video processing error: {str(e)}" return None, error_msg, 0.0, error_msg def get_system_info(): """Get system information for debugging.""" info = { "Python Version": sys.version, "OpenCV Available": True, "GPU Available": USE_GPU, "Debug Mode": DEBUG_MODE, "Analyzer Initialized": analyzer.initialized, "Server Time": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } info_text = "\n".join([f"**{k}:** {v}" for k, v in info.items()]) return info_text def create_interface(): """Create the main Gradio interface.""" # Define custom CSS to fix styling issues custom_css = """ .gradio-container { max-width: 1200px !important; margin: auto; } .main-header { text-align: center; color: #2563eb; margin-bottom: 2rem; } .status-box { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 1rem; margin: 0.5rem 0; } .metric-display { font-size: 1.2rem; font-weight: bold; color: #059669; } """ with gr.Blocks( title="GATE Motion Analysis", css=custom_css, theme=gr.themes.Soft(), analytics_enabled=False # Disable analytics to prevent tracking errors ) as interface: gr.HTML('

🏃‍♂️ GATE Motion Analysis System

') gr.Markdown(""" Welcome to the GATE Motion Analysis System! Upload an image or video to analyze exercise form. **Features:** - Real-time pose detection - Exercise form analysis - Personalized feedback - Multi-exercise support """) with gr.Row(): with gr.Column(scale=2): with gr.Tabs() as tabs: with gr.TabItem("📸 Image Analysis"): image_input = gr.Image( label="Upload Exercise Image", type="pil", height=400 ) image_exercise = gr.Dropdown( choices=["Squats", "Push-ups", "Lunges", "Bicep Curls", "Deadlifts"], value="Squats", label="Exercise Type" ) image_btn = gr.Button("Analyze Image", variant="primary") with gr.TabItem("🎥 Video Analysis"): video_input = gr.Video( label="Upload Exercise Video", height=400 ) video_exercise = gr.Dropdown( choices=["Squats", "Push-ups", "Lunges", "Bicep Curls", "Deadlifts"], value="Squats", label="Exercise Type" ) video_btn = gr.Button("Analyze Video", variant="primary") with gr.Column(scale=2): gr.Markdown("### 📊 Analysis Results") result_image = gr.Image( label="Analyzed Frame", height=400 ) with gr.Row(): status_display = gr.Textbox( label="Status", value="Ready for analysis", interactive=False, elem_classes=["status-box"] ) confidence_display = gr.Number( label="Form Score (%)", value=0, interactive=False, elem_classes=["metric-display"] ) feedback_display = gr.Textbox( label="Feedback & Recommendations", value="Upload an image or video to get started", lines=4, interactive=False ) # System information (collapsible) with gr.Accordion("🔧 System Information", open=False): system_info = gr.Markdown(get_system_info()) refresh_info_btn = gr.Button("Refresh System Info") # Event handlers image_btn.click( fn=process_image, inputs=[image_input, image_exercise], outputs=[result_image, status_display, confidence_display, feedback_display] ) video_btn.click( fn=process_video, inputs=[video_input, video_exercise], outputs=[result_image, status_display, confidence_display, feedback_display] ) refresh_info_btn.click( fn=get_system_info, outputs=[system_info] ) # Remove automatic processing to prevent API conflicts # Users must click the analyze button to process files # Add footer gr.Markdown(""" --- **GATE Motion Analysis System** - Developed for real-time exercise form analysis and feedback. *Note: This is a demonstration version. For full functionality, additional models and dependencies may be required.* """) return interface def main(): """Main function to launch the application.""" print("🚀 Starting GATE Motion Analysis System...") print(f"Debug Mode: {DEBUG_MODE}") print(f"GPU Support: {USE_GPU}") # Create the interface interface = create_interface() # Conservative launch configuration with only basic parameters launch_config = { # "server_name": "0.0.0.0", "server_port": int(os.getenv("PORT", 7860)), "share": True, "show_error": True, "show_api": False, "quiet": not DEBUG_MODE } try: interface.launch(**launch_config) except Exception as e: print(f"Launch failed: {e}") print("Trying minimal fallback configuration...") # Ultra-minimal fallback configuration interface.launch( share=False, show_error=True ) if __name__ == "__main__": main()