Spaces:
Running
Running
File size: 20,863 Bytes
c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 c89f65f 28fcc08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
"""Backend services for AION Search."""
import time
import logging
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
import requests
from typing import List
from openai import OpenAI
from src.config import (
ZILLIZ_BEARER,
ZILLIZ_ENDPOINT,
ZILLIZ_COLLECTION_NAME,
ZILLIZ_IMAGE_SEARCH_COLLECTION_NAME,
ZILLIZ_ANNS_FIELD,
ZILLIZ_PRIMARY_KEY,
ZILLIZ_OUTPUT_FIELDS,
COLLECTION_CONFIGS,
OPENAI_API_KEY,
OPENAI_EMBEDDING_MODEL,
CLIP_NORMALIZE_EPS,
DEFAULT_TOP_K,
)
from src.utils import cutout_url, log_zilliz_query
logger = logging.getLogger(__name__)
class CLIPModelService:
"""Service for managing CLIP model loading and inference."""
def __init__(self):
self.model = None
self.device = None
self.loaded = False
def load_model(self, checkpoint_path: str) -> None:
"""Load the CLIP model from checkpoint.
Args:
checkpoint_path: Path to the CLIP model checkpoint file
"""
logger.info(f"Loading CLIP model from {checkpoint_path}...")
from clip.models.clip_model import GalaxyClipModel
# Set device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
model_config = checkpoint['model_config']
# Initialize model with saved configuration
self.model = GalaxyClipModel(
image_input_dim=model_config['image_input_dim'],
text_input_dim=model_config['text_input_dim'],
embedding_dim=model_config['embedding_dim'],
use_mean_embeddings=model_config.get('use_mean_embeddings', True)
)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.to(self.device)
self.model.eval()
self.loaded = True
logger.info("CLIP model loaded successfully")
def encode_text(self, text_embedding: np.ndarray) -> np.ndarray:
"""Project text embedding through CLIP text projector.
Args:
text_embedding: OpenAI text embedding (1536-dim)
Returns:
CLIP-projected embedding (1024-dim)
"""
if not self.loaded:
raise RuntimeError("CLIP model not loaded. Call load_model() first.")
with torch.no_grad():
text_tensor = torch.from_numpy(text_embedding).float().unsqueeze(0).to(self.device)
clip_features = self.model.text_projector(text_tensor)
# Normalize as per CLIP
clip_features = F.normalize(clip_features, dim=-1, eps=CLIP_NORMALIZE_EPS)
query_embedding = clip_features.cpu().numpy().squeeze(0)
return query_embedding
class ImageProcessingService:
"""Service for retrieving pre-existing image embeddings from Zilliz."""
def __init__(self):
pass
def encode_image(self, ra: float, dec: float, fov: float = 0.025, size: int = 256) -> np.ndarray:
"""Query Zilliz for pre-existing embedding at the given coordinates.
Args:
ra: Right ascension in degrees
dec: Declination in degrees
fov: Field of view in degrees (used to define search box)
size: Image size in pixels (unused, kept for API compatibility)
Returns:
Pre-existing AION-Search embedding vector (1024-dim) from Zilliz
"""
logger.info(f"Querying Zilliz for pre-existing embedding at RA={ra}, Dec={dec}, FoV={fov}")
# Calculate bounding box based on field of view
ra_min = ra - fov/2
ra_max = ra + fov/2
dec_min = dec - fov/2
dec_max = dec + fov/2
# Build filter expression for coordinate range
filter_expr = f"ra > {ra_min} AND ra < {ra_max} AND dec > {dec_min} AND dec < {dec_max}"
# Get the ANNS field for the image search collection
image_search_config = COLLECTION_CONFIGS.get(ZILLIZ_IMAGE_SEARCH_COLLECTION_NAME)
image_anns_field = image_search_config["anns_field"]
# Prepare query payload - always use the image search collection (legacy)
payload = {
"collectionName": ZILLIZ_IMAGE_SEARCH_COLLECTION_NAME,
"filter": filter_expr,
"outputFields": [image_anns_field],
"limit": 1
}
headers = {
"Authorization": f"Bearer {ZILLIZ_BEARER}",
"Accept": "application/json",
"Content-Type": "application/json"
}
try:
# Use query endpoint (replace /search with /query)
query_endpoint = ZILLIZ_ENDPOINT.replace("/search", "/query")
response = requests.post(query_endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()
if result.get("code") == 0 and "data" in result:
data = result["data"]
if data and len(data) > 0:
# Extract the embedding from the first result using the image search ANNS field
embedding = data[0].get(image_anns_field)
if embedding:
embedding_array = np.array(embedding, dtype=np.float32)
logger.info(f"Retrieved pre-existing embedding with shape: {embedding_array.shape}")
return embedding_array
else:
logger.error(f"No embedding field found in result: {data[0].keys()}")
raise RuntimeError(f"No embedding found at coordinates RA={ra}, Dec={dec}")
else:
logger.error(f"No galaxies found at coordinates RA={ra}, Dec={dec} with FoV={fov}")
raise RuntimeError(f"No galaxies found at coordinates RA={ra}, Dec={dec}")
else:
logger.error(f"Zilliz query failed: {result}")
raise RuntimeError(f"Failed to query Zilliz: {result}")
except Exception as e:
logger.error(f"Error querying Zilliz for embedding: {e}")
raise
class EmbeddingService:
"""Service for encoding text queries into embeddings."""
def __init__(self, clip_service: CLIPModelService):
self.clip_service = clip_service
self.openai_client = None
def _get_openai_client(self) -> OpenAI:
"""Get or create OpenAI client."""
if self.openai_client is None:
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY environment variable not set")
self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
return self.openai_client
def _moderate_content(self, text: str) -> bool:
"""Check if text content is appropriate using OpenAI Moderation API.
Args:
text: Text to moderate
Returns:
True if content is safe, False if flagged
"""
try:
client = self._get_openai_client()
response = client.moderations.create(input=text)
# If any category is flagged, reject the content
if response.results[0].flagged:
logger.warning(f"Content moderation flagged input")
return False
return True
except Exception as e:
logger.error(f"Moderation API error: {e}")
# On error, allow the content through (fail open)
return True
def encode_text_query(self, query: str) -> np.ndarray:
"""Encode text query using OpenAI embeddings + CLIP text projector.
Args:
query: Text search query
Returns:
CLIP embedding vector
"""
# Moderate content first
if not self._moderate_content(query):
raise ValueError("Content moderation filter triggered")
client = self._get_openai_client()
# Get OpenAI text embedding
response = client.embeddings.create(
input=query,
model=OPENAI_EMBEDDING_MODEL
)
text_embedding = np.array(response.data[0].embedding)
# Project through CLIP text projector
return self.clip_service.encode_text(text_embedding)
def encode_vector_queries(
self,
queries: List[str],
operations: List[str]
) -> np.ndarray:
"""Encode multiple text queries and combine them using vector addition/subtraction.
Args:
queries: List of text queries
operations: List of operations ('+' or '-') for each query
Returns:
Combined normalized embedding vector
"""
# Moderate all queries first
for query in queries:
if not self._moderate_content(query):
raise ValueError("Content moderation filter triggered")
client = self._get_openai_client()
# Get all embeddings at once for efficiency
response = client.embeddings.create(
input=queries,
model=OPENAI_EMBEDDING_MODEL
)
# Initialize combined embedding
combined_embedding = None
# Process each embedding with its operation
for embedding_data, operation in zip(response.data, operations):
text_embedding = np.array(embedding_data.embedding)
# Project through CLIP text projector
query_embedding = self.clip_service.encode_text(text_embedding)
# Apply operation
if combined_embedding is None:
combined_embedding = query_embedding if operation == "+" else -query_embedding
else:
if operation == "+":
combined_embedding += query_embedding
else:
combined_embedding -= query_embedding
# Normalize the final combined embedding
norm = np.linalg.norm(combined_embedding)
if norm > 0:
combined_embedding = combined_embedding / norm
return combined_embedding
class ZillizService:
"""Service for interacting with Zilliz vector database."""
def get_collection_count(self) -> int:
"""Get the total number of entities in the collection.
Returns:
Total count of entities in the collection
"""
logger.info("Getting collection count from Zilliz...")
# Use query endpoint with count to get total entities
payload = {
"collectionName": ZILLIZ_COLLECTION_NAME,
"filter": "", # Empty filter to count all entities
"outputFields": ["count(*)"]
}
headers = {
"Authorization": f"Bearer {ZILLIZ_BEARER}",
"Accept": "application/json",
"Content-Type": "application/json"
}
try:
# Use the query endpoint (replace /search with /query in the endpoint)
query_endpoint = ZILLIZ_ENDPOINT.replace("/search", "/query")
response = requests.post(query_endpoint, json=payload, headers=headers)
response.raise_for_status()
result = response.json()
if result.get("code") == 0 and "data" in result:
# The count should be in the response data
data = result["data"]
if data and len(data) > 0:
count = data[0].get("count(*)", 0)
logger.info(f"Collection count: {count:,}")
return count
else:
logger.error(f"Failed to get collection count: {result}")
return 0
except Exception as e:
logger.error(f"Error getting collection count: {e}")
return 0
def search(self, query_embedding: np.ndarray, top_k: int = DEFAULT_TOP_K, filter_expr: str = None) -> pd.DataFrame:
"""Search Zilliz for top-k most similar galaxies.
Args:
query_embedding: Query embedding vector
top_k: Number of results to return
filter_expr: Optional filter expression for filtering results
Returns:
DataFrame with search results
"""
logger.info("Querying Zilliz...")
start_time = time.time()
# Prepare the search payload
payload = {
"collectionName": ZILLIZ_COLLECTION_NAME,
"data": [query_embedding.tolist()],
"annsField": ZILLIZ_ANNS_FIELD,
"limit": top_k,
"outputFields": ZILLIZ_OUTPUT_FIELDS
}
# Add filter if provided
if filter_expr:
payload["filter"] = filter_expr
logger.info(f"Applying filter: {filter_expr}")
headers = {
"Authorization": f"Bearer {ZILLIZ_BEARER}",
"Accept": "application/json",
"Content-Type": "application/json"
}
try:
response = requests.post(ZILLIZ_ENDPOINT, json=payload, headers=headers)
response.raise_for_status()
result = response.json()
if result.get("code") == 0 and "data" in result:
# Extract cost from response
cost_vcu = result.get("cost", 0)
# Convert to DataFrame
data_list = result["data"]
df = pd.DataFrame(data_list)
# Add cutout URLs
if not df.empty:
df["cutout_url"] = [cutout_url(ra, dec) for ra, dec in zip(df["ra"], df["dec"])]
query_time = time.time() - start_time
# Log the query
log_zilliz_query(
query_type="vector_search",
query_info={
"top_k": top_k,
"embedding_dim": len(query_embedding)
},
result_count=len(df),
query_time=query_time,
cost_vcu=cost_vcu
)
return df
else:
logger.error(f"Zilliz search failed: {result}")
return pd.DataFrame()
except Exception as e:
logger.error(f"Zilliz search error: {e}")
return pd.DataFrame()
class SearchService:
"""High-level search orchestration service."""
def __init__(
self,
embedding_service: EmbeddingService,
zilliz_service: ZillizService,
image_service: 'ImageProcessingService' = None
):
self.embedding_service = embedding_service
self.zilliz_service = zilliz_service
self.image_service = image_service
def _build_rmag_filter(self, rmag_min=None, rmag_max=None) -> str:
"""Build r_mag filter expression.
Args:
rmag_min: Minimum r_mag value (inclusive)
rmag_max: Maximum r_mag value (inclusive)
Returns:
Filter expression string, or None if no filter
"""
filter_parts = []
if rmag_min is not None:
filter_parts.append(f"r_mag >= {rmag_min}")
if rmag_max is not None:
filter_parts.append(f"r_mag <= {rmag_max}")
if filter_parts:
return " AND ".join(filter_parts)
return None
def search_text(self, query: str, top_k: int = DEFAULT_TOP_K, rmag_min=None, rmag_max=None) -> pd.DataFrame:
"""Search galaxies using text query.
Args:
query: Text search query
top_k: Number of results to return
rmag_min: Minimum r_mag value (inclusive)
rmag_max: Maximum r_mag value (inclusive)
Returns:
DataFrame with search results
"""
try:
# Encode query
query_embedding = self.embedding_service.encode_text_query(query)
# Build filter
filter_expr = self._build_rmag_filter(rmag_min, rmag_max)
# Search Zilliz
return self.zilliz_service.search(query_embedding, top_k, filter_expr)
except ValueError as e:
# Content moderation triggered - return empty results silently
if "moderation" in str(e).lower():
logger.info("Search blocked by content moderation")
return pd.DataFrame()
raise
def search_vector(
self,
queries: List[str],
operations: List[str],
top_k: int = DEFAULT_TOP_K,
rmag_min=None,
rmag_max=None
) -> pd.DataFrame:
"""Search galaxies using vector addition/subtraction.
Args:
queries: List of text queries
operations: List of operations ('+' or '-') for each query
top_k: Number of results to return
rmag_min: Minimum r_mag value (inclusive)
rmag_max: Maximum r_mag value (inclusive)
Returns:
DataFrame with search results
"""
try:
# Encode and combine vectors
combined_embedding = self.embedding_service.encode_vector_queries(queries, operations)
# Build filter
filter_expr = self._build_rmag_filter(rmag_min, rmag_max)
# Search Zilliz
return self.zilliz_service.search(combined_embedding, top_k, filter_expr)
except ValueError as e:
# Content moderation triggered - return empty results silently
if "moderation" in str(e).lower():
logger.info("Search blocked by content moderation")
return pd.DataFrame()
raise
def search_advanced(
self,
text_queries: List[str] = None,
text_weights: List[float] = None,
image_queries: List[dict] = None,
image_weights: List[float] = None,
top_k: int = DEFAULT_TOP_K,
rmag_min=None,
rmag_max=None
) -> pd.DataFrame:
"""Search galaxies using advanced vector addition/subtraction with text and/or images.
Args:
text_queries: List of text query strings
text_weights: List of weight magnitudes for text queries (e.g., 1.0, -1.0, 2.0, -5.0)
image_queries: List of dicts with 'ra', 'dec', 'fov' keys
image_weights: List of weight magnitudes for image queries (e.g., 1.0, -1.0, 2.0, -5.0)
top_k: Number of results to return
rmag_min: Minimum r_mag value (inclusive)
rmag_max: Maximum r_mag value (inclusive)
Returns:
DataFrame with search results
"""
try:
combined_embedding = None
# Process text queries
if text_queries and len(text_queries) > 0:
for query, weight in zip(text_queries, text_weights):
query_embedding = self.embedding_service.encode_text_query(query)
# Apply weight
weighted_embedding = query_embedding * weight
if combined_embedding is None:
combined_embedding = weighted_embedding
else:
combined_embedding += weighted_embedding
# Process image queries
if image_queries and len(image_queries) > 0:
if self.image_service is None:
raise RuntimeError("Image service not initialized")
for img_query, weight in zip(image_queries, image_weights):
# Encode image
image_embedding = self.image_service.encode_image(
ra=img_query['ra'],
dec=img_query['dec'],
fov=img_query.get('fov', 0.025),
size=256
)
# Apply weight
weighted_embedding = image_embedding * weight
if combined_embedding is None:
combined_embedding = weighted_embedding
else:
combined_embedding += weighted_embedding
# Normalize the final combined embedding
if combined_embedding is not None:
norm = np.linalg.norm(combined_embedding)
if norm > 0:
combined_embedding = combined_embedding / norm
# Build filter
filter_expr = self._build_rmag_filter(rmag_min, rmag_max)
# Search Zilliz
return self.zilliz_service.search(combined_embedding, top_k, filter_expr)
except ValueError as e:
# Content moderation triggered - return empty results silently
if "moderation" in str(e).lower():
logger.info("Search blocked by content moderation")
return pd.DataFrame()
raise
|