Spaces:
Sleeping
Sleeping
File size: 14,267 Bytes
e51cd56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
import torch
from PIL import Image
import os
from typing import List, Tuple, Optional
import time
# ============= DATASET SETUP FUNCTION =============
def setup_dataset():
"""Download and prepare dataset if not exists."""
if not os.path.exists("dataset/images"):
print("π₯ First-time setup: downloading dataset...")
# Import required modules for setup
from datasets import load_dataset
from tqdm import tqdm
# Create directories
os.makedirs("dataset/images", exist_ok=True)
# 1. Download images (from download_images_hf.py)
print("π₯ Loading Caltech101 dataset...")
dataset = load_dataset("flwrlabs/caltech101", split="train")
dataset = dataset.shuffle(seed=42).select(range(min(500, len(dataset))))
print(f"πΎ Saving {len(dataset)} images locally...")
for i, item in enumerate(tqdm(dataset)):
img = item["image"]
label = item["label"]
label_name = dataset.features["label"].int2str(label)
fname = f"{i:05d}_{label_name}.jpg"
img.save(os.path.join("dataset/images", fname))
# 2. Generate embeddings (from embed_images_clip.py)
print("π Generating image embeddings...")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer("clip-ViT-B-32", device=device)
image_files = [f for f in os.listdir("dataset/images") if f.lower().endswith((".jpg", ".png"))]
embeddings = []
for fname in tqdm(image_files, desc="Encoding images"):
img_path = os.path.join("dataset/images", fname)
img = Image.open(img_path).convert("RGB")
emb = model.encode(img, convert_to_numpy=True, show_progress_bar=False, normalize_embeddings=True)
embeddings.append(emb)
embeddings = np.array(embeddings, dtype="float32")
np.save("dataset/image_embeddings.npy", embeddings)
np.save("dataset/image_filenames.npy", np.array(image_files))
# 3. Build FAISS index (from build_faiss_index.py)
print("π¦ Building FAISS index...")
dim = embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(embeddings)
faiss.write_index(index, "dataset/faiss_index.bin")
print("β
Dataset setup complete!")
else:
print("β
Dataset found, ready to go!")
# Call setup before anything else
setup_dataset()
# Configuration
META_PATH = "dataset/image_filenames.npy"
INDEX_PATH = "dataset/faiss_index.bin"
IMG_DIR = "dataset/images"
class MultimodalSearchEngine:
def __init__(self):
"""Initialize the search engine with pre-built index and model."""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"π Using device: {self.device}")
# Load pre-built index and metadata
self.index = faiss.read_index(INDEX_PATH)
self.image_files = np.load(META_PATH)
# Load CLIP model
self.model = SentenceTransformer("clip-ViT-B-32", device=self.device)
print(f"β
Loaded index with {self.index.ntotal} images")
def search_by_text(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
"""Search for images matching a text query."""
if not query.strip():
return []
start_time = time.time()
query_emb = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True)
scores, idxs = self.index.search(query_emb, k)
search_time = time.time() - start_time
results = []
for j, i in enumerate(idxs[0]):
if i != -1: # Valid index
img_path = os.path.join(IMG_DIR, self.image_files[i])
results.append((img_path, float(scores[0][j]), search_time))
return results
def search_by_image(self, image: Image.Image, k: int = 5) -> List[Tuple[str, float]]:
"""Search for images visually similar to the given image."""
if image is None:
return []
start_time = time.time()
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
query_emb = self.model.encode(image, convert_to_numpy=True, normalize_embeddings=True)
query_emb = np.expand_dims(query_emb, axis=0)
scores, idxs = self.index.search(query_emb, k)
search_time = time.time() - start_time
results = []
for j, i in enumerate(idxs[0]):
if i != -1: # Valid index
img_path = os.path.join(IMG_DIR, self.image_files[i])
results.append((img_path, float(scores[0][j]), search_time))
return results
# Initialize the search engine
try:
search_engine = MultimodalSearchEngine()
ENGINE_LOADED = True
except Exception as e:
print(f"β Error loading search engine: {e}")
ENGINE_LOADED = False
def format_results(results: List[Tuple[str, float, float]]) -> Tuple[List[str], str]:
"""Format search results for Gradio display."""
if not results:
return [], "No results found."
image_paths = [result[0] for result in results]
search_time = results[0][2] if results else 0
# Create detailed results text
results_text = f"π **Search Results** (Search time: {search_time:.3f}s)\n\n"
for i, (path, score, _) in enumerate(results, 1):
filename = os.path.basename(path)
# Extract label from filename (format: 00000_label.jpg)
label = filename.split('_', 1)[1].rsplit('.', 1)[0] if '_' in filename else 'unknown'
results_text += f"**{i}.** {label} (similarity: {score:.3f})\n"
return image_paths, results_text
def text_search_interface(query: str, num_results: int) -> Tuple[List[str], str]:
"""Interface function for text-based search."""
if not ENGINE_LOADED:
return [], "β Search engine not loaded. Please check if all files are available."
if not query.strip():
return [], "Please enter a search query."
try:
results = search_engine.search_by_text(query, k=num_results)
return format_results(results)
except Exception as e:
return [], f"β Error during search: {str(e)}"
def image_search_interface(image: Image.Image, num_results: int) -> Tuple[List[str], str]:
"""Interface function for image-based search."""
if not ENGINE_LOADED:
return [], "β Search engine not loaded. Please check if all files are available."
if image is None:
return [], "Please upload an image."
try:
results = search_engine.search_by_image(image, k=num_results)
return format_results(results)
except Exception as e:
return [], f"β Error during search: {str(e)}"
def get_random_examples() -> List[str]:
"""Get random example queries."""
examples = [
"a cat sitting on a chair",
"airplane in the sky",
"red car on the road",
"person playing guitar",
"dog running in the park",
"beautiful sunset landscape",
"computer on a desk",
"flowers in a garden"
]
return examples
# Create the Gradio interface
with gr.Blocks(
title="π Multimodal AI Search Engine",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.gallery img {
border-radius: 8px;
}
"""
) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 30px;">
<h1>π Multimodal AI Search Engine</h1>
<p style="font-size: 18px; color: #666;">
Search through 500 Caltech101 images using text descriptions or image similarity
</p>
<p style="font-size: 14px; color: #888;">
Powered by CLIP-ViT-B-32 and FAISS for fast similarity search
</p>
</div>
""")
with gr.Tabs() as tabs:
# Text Search Tab
with gr.Tab("π Text Search", id="text_search"):
gr.Markdown("### Search images using natural language descriptions")
with gr.Row():
with gr.Column(scale=2):
text_query = gr.Textbox(
label="Search Query",
placeholder="Describe what you're looking for (e.g., 'a red car', 'person with guitar')",
lines=2
)
with gr.Column(scale=1):
text_num_results = gr.Slider(
minimum=1, maximum=20, value=5, step=1,
label="Number of Results"
)
text_search_btn = gr.Button("π Search", variant="primary", size="lg")
# Examples
gr.Examples(
examples=get_random_examples()[:4],
inputs=text_query,
label="Example Queries"
)
with gr.Row():
text_results = gr.Gallery(
label="Search Results",
show_label=True,
elem_id="text_gallery",
columns=5,
rows=1,
height="auto",
object_fit="contain"
)
text_info = gr.Markdown(label="Details")
# Image Search Tab
with gr.Tab("πΌοΈ Image Search", id="image_search"):
gr.Markdown("### Find visually similar images")
with gr.Row():
with gr.Column(scale=2):
image_query = gr.Image(
label="Upload Query Image",
type="pil",
height=300
)
with gr.Column(scale=1):
image_num_results = gr.Slider(
minimum=1, maximum=20, value=5, step=1,
label="Number of Results"
)
image_search_btn = gr.Button("π Search Similar", variant="primary", size="lg")
with gr.Row():
image_results = gr.Gallery(
label="Similar Images",
show_label=True,
elem_id="image_gallery",
columns=5,
rows=1,
height="auto",
object_fit="contain"
)
image_info = gr.Markdown(label="Details")
# About Tab
with gr.Tab("βΉοΈ About", id="about"):
gr.Markdown("""
### π¬ Technical Details
This multimodal search engine demonstrates advanced AI techniques for content-based image retrieval:
**π§ Model Architecture:**
- **CLIP-ViT-B-32**: OpenAI's Contrastive Language-Image Pre-training model
- **Vision Transformer**: Processes images using attention mechanisms
- **Dual-encoder**: Separate encoders for text and images mapping to shared embedding space
**β‘ Search Infrastructure:**
- **FAISS**: Facebook AI Similarity Search for efficient vector operations
- **Cosine Similarity**: Measures semantic similarity in embedding space
- **Inner Product Index**: Optimized for normalized embeddings
**π Dataset:**
- **Caltech101**: 500 randomly sampled images from 101 object categories
- **Preprocessing**: RGB conversion, CLIP-compatible normalization
- **Embeddings**: 512-dimensional feature vectors per image
**π Performance Features:**
- **GPU Acceleration**: CUDA support for faster inference
- **Batch Processing**: Efficient embedding computation
- **Real-time Search**: Sub-second query response times
- **Normalized Embeddings**: L2 normalization for consistent similarity scores
**π― Applications:**
- Content-based image retrieval
- Visual search engines
- Cross-modal similarity matching
- Dataset exploration and analysis
### π οΈ Implementation Highlights
- Modular architecture with separate indexing and search components
- Error handling and graceful degradation
- Configurable result counts and similarity thresholds
- Professional UI with responsive design
""")
# Event handlers
text_search_btn.click(
fn=text_search_interface,
inputs=[text_query, text_num_results],
outputs=[text_results, text_info]
)
image_search_btn.click(
fn=image_search_interface,
inputs=[image_query, image_num_results],
outputs=[image_results, image_info]
)
# Auto-search on Enter key for text
text_query.submit(
fn=text_search_interface,
inputs=[text_query, text_num_results],
outputs=[text_results, text_info]
)
# Launch configuration
if __name__ == "__main__":
print("\n" + "="*50)
print("π Starting Multimodal AI Search Engine")
print("="*50)
if ENGINE_LOADED:
print(f"β
Search engine ready with {search_engine.index.ntotal} images")
print(f"β
Using device: {search_engine.device}")
else:
print("β Search engine failed to load")
print("\nπ‘ Usage Tips:")
print("- Text search: Use natural language descriptions")
print("- Image search: Upload any image to find similar ones")
print("- Adjust result count using the slider")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |