Delete app..py
Browse files
app..py
DELETED
|
@@ -1,432 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
from annotator.util import resize_image, HWC3
|
| 6 |
-
|
| 7 |
-
DESCRIPTION = '# ControlNet v1.1 Annotators (that runs on cpu only)'
|
| 8 |
-
DESCRIPTION += '\n<p>This app generates Control Image for Mochi Diffusion's ControlNet.</p>'
|
| 9 |
-
DESCRIPTION += '\n<p>HEIC image is not converted. Please use PNG or JPG image.</p>'
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
model_canny = None
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def canny(img, res, l, h):
|
| 16 |
-
img = resize_image(HWC3(img), res)
|
| 17 |
-
global model_canny
|
| 18 |
-
if model_canny is None:
|
| 19 |
-
from annotator.canny import CannyDetector
|
| 20 |
-
model_canny = CannyDetector()
|
| 21 |
-
result = model_canny(img, l, h)
|
| 22 |
-
return [result]
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
model_hed = None
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def hed(img, res):
|
| 29 |
-
img = resize_image(HWC3(img), res)
|
| 30 |
-
global model_hed
|
| 31 |
-
if model_hed is None:
|
| 32 |
-
from annotator.hed import HEDdetector
|
| 33 |
-
model_hed = HEDdetector()
|
| 34 |
-
result = model_hed(img)
|
| 35 |
-
return [result]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
model_pidi = None
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def pidi(img, res):
|
| 42 |
-
img = resize_image(HWC3(img), res)
|
| 43 |
-
global model_pidi
|
| 44 |
-
if model_pidi is None:
|
| 45 |
-
from annotator.pidinet import PidiNetDetector
|
| 46 |
-
model_pidi = PidiNetDetector()
|
| 47 |
-
result = model_pidi(img)
|
| 48 |
-
return [result]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
model_mlsd = None
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def mlsd(img, res, thr_v, thr_d):
|
| 55 |
-
img = resize_image(HWC3(img), res)
|
| 56 |
-
global model_mlsd
|
| 57 |
-
if model_mlsd is None:
|
| 58 |
-
from annotator.mlsd import MLSDdetector
|
| 59 |
-
model_mlsd = MLSDdetector()
|
| 60 |
-
result = model_mlsd(img, thr_v, thr_d)
|
| 61 |
-
return [result]
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
model_midas = None
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def midas(img, res):
|
| 68 |
-
img = resize_image(HWC3(img), res)
|
| 69 |
-
global model_midas
|
| 70 |
-
if model_midas is None:
|
| 71 |
-
from annotator.midas import MidasDetector
|
| 72 |
-
model_midas = MidasDetector()
|
| 73 |
-
result = model_midas(img)
|
| 74 |
-
return [result]
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
model_zoe = None
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def zoe(img, res):
|
| 81 |
-
img = resize_image(HWC3(img), res)
|
| 82 |
-
global model_zoe
|
| 83 |
-
if model_zoe is None:
|
| 84 |
-
from annotator.zoe import ZoeDetector
|
| 85 |
-
model_zoe = ZoeDetector()
|
| 86 |
-
result = model_zoe(img)
|
| 87 |
-
return [result]
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
model_normalbae = None
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
def normalbae(img, res):
|
| 94 |
-
img = resize_image(HWC3(img), res)
|
| 95 |
-
global model_normalbae
|
| 96 |
-
if model_normalbae is None:
|
| 97 |
-
from annotator.normalbae import NormalBaeDetector
|
| 98 |
-
model_normalbae = NormalBaeDetector()
|
| 99 |
-
result = model_normalbae(img)
|
| 100 |
-
return [result]
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
model_openpose = None
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def openpose(img, res, hand_and_face):
|
| 107 |
-
img = resize_image(HWC3(img), res)
|
| 108 |
-
global model_openpose
|
| 109 |
-
if model_openpose is None:
|
| 110 |
-
from annotator.openpose import OpenposeDetector
|
| 111 |
-
model_openpose = OpenposeDetector()
|
| 112 |
-
result = model_openpose(img, hand_and_face)
|
| 113 |
-
return [result]
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
model_uniformer = None
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
#def uniformer(img, res):
|
| 120 |
-
# img = resize_image(HWC3(img), res)
|
| 121 |
-
# global model_uniformer
|
| 122 |
-
# if model_uniformer is None:
|
| 123 |
-
# from annotator.uniformer import UniformerDetector
|
| 124 |
-
# model_uniformer = UniformerDetector()
|
| 125 |
-
# result = model_uniformer(img)
|
| 126 |
-
# return [result]
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
model_lineart_anime = None
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def lineart_anime(img, res, invert=True):
|
| 133 |
-
img = resize_image(HWC3(img), res)
|
| 134 |
-
global model_lineart_anime
|
| 135 |
-
if model_lineart_anime is None:
|
| 136 |
-
from annotator.lineart_anime import LineartAnimeDetector
|
| 137 |
-
model_lineart_anime = LineartAnimeDetector()
|
| 138 |
-
# result = model_lineart_anime(img)
|
| 139 |
-
if (invert):
|
| 140 |
-
result = cv2.bitwise_not(model_lineart_anime(img))
|
| 141 |
-
else:
|
| 142 |
-
result = model_lineart_anime(img)
|
| 143 |
-
return [result]
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
model_lineart = None
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def lineart(img, res, coarse=False, invert=True):
|
| 150 |
-
img = resize_image(HWC3(img), res)
|
| 151 |
-
global model_lineart
|
| 152 |
-
if model_lineart is None:
|
| 153 |
-
from annotator.lineart import LineartDetector
|
| 154 |
-
model_lineart = LineartDetector()
|
| 155 |
-
# result = model_lineart(img, coarse)
|
| 156 |
-
if (invert):
|
| 157 |
-
result = cv2.bitwise_not(model_lineart(img, coarse))
|
| 158 |
-
else:
|
| 159 |
-
result = model_lineart(img, coarse)
|
| 160 |
-
return [result]
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
model_oneformer_coco = None
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def oneformer_coco(img, res):
|
| 167 |
-
img = resize_image(HWC3(img), res)
|
| 168 |
-
global model_oneformer_coco
|
| 169 |
-
if model_oneformer_coco is None:
|
| 170 |
-
from annotator.oneformer import OneformerCOCODetector
|
| 171 |
-
model_oneformer_coco = OneformerCOCODetector()
|
| 172 |
-
result = model_oneformer_coco(img)
|
| 173 |
-
return [result]
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
model_oneformer_ade20k = None
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
def oneformer_ade20k(img, res):
|
| 180 |
-
img = resize_image(HWC3(img), res)
|
| 181 |
-
global model_oneformer_ade20k
|
| 182 |
-
if model_oneformer_ade20k is None:
|
| 183 |
-
from annotator.oneformer import OneformerADE20kDetector
|
| 184 |
-
model_oneformer_ade20k = OneformerADE20kDetector()
|
| 185 |
-
result = model_oneformer_ade20k(img)
|
| 186 |
-
return [result]
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
model_content_shuffler = None
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def content_shuffler(img, res):
|
| 193 |
-
img = resize_image(HWC3(img), res)
|
| 194 |
-
global model_content_shuffler
|
| 195 |
-
if model_content_shuffler is None:
|
| 196 |
-
from annotator.shuffle import ContentShuffleDetector
|
| 197 |
-
model_content_shuffler = ContentShuffleDetector()
|
| 198 |
-
result = model_content_shuffler(img)
|
| 199 |
-
return [result]
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
model_color_shuffler = None
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
def color_shuffler(img, res):
|
| 206 |
-
img = resize_image(HWC3(img), res)
|
| 207 |
-
global model_color_shuffler
|
| 208 |
-
if model_color_shuffler is None:
|
| 209 |
-
from annotator.shuffle import ColorShuffleDetector
|
| 210 |
-
model_color_shuffler = ColorShuffleDetector()
|
| 211 |
-
result = model_color_shuffler(img)
|
| 212 |
-
return [result]
|
| 213 |
-
|
| 214 |
-
model_inpaint = None
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
def inpaint(image, invert):
|
| 218 |
-
# image = resize_image(img, res)
|
| 219 |
-
color = HWC3(image["image"])
|
| 220 |
-
if(invert):
|
| 221 |
-
alpha = image["mask"][:, :, 0:1]
|
| 222 |
-
else:
|
| 223 |
-
alpha = 255 - image["mask"][:, :, 0:1]
|
| 224 |
-
result = np.concatenate([color, alpha], axis=2)
|
| 225 |
-
return [result]
|
| 226 |
-
|
| 227 |
-
block = gr.Blocks().queue()
|
| 228 |
-
with block:
|
| 229 |
-
gr.Markdown(DESCRIPTION)
|
| 230 |
-
with gr.Row():
|
| 231 |
-
gr.Markdown("## Canny Edge")
|
| 232 |
-
with gr.Row():
|
| 233 |
-
with gr.Column():
|
| 234 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 235 |
-
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
|
| 236 |
-
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
|
| 237 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 238 |
-
run_button = gr.Button(label="Run")
|
| 239 |
-
with gr.Column():
|
| 240 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 241 |
-
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])
|
| 242 |
-
|
| 243 |
-
gr.Markdown("<hr>")
|
| 244 |
-
with gr.Row():
|
| 245 |
-
gr.Markdown("## Inpaint \n<p>Mochi Diffusionの次バージョンで使えるようになるかもしれないので試作中")
|
| 246 |
-
with gr.Row():
|
| 247 |
-
with gr.Column():
|
| 248 |
-
input_image = gr.Image(source='upload', type="numpy", tool="sketch", height=512)
|
| 249 |
-
# resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 250 |
-
invert = gr.Checkbox(label='Invert Mask', value=False)
|
| 251 |
-
run_button = gr.Button(label="Run")
|
| 252 |
-
with gr.Column():
|
| 253 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 254 |
-
# run_button.click(fn=inpaint, inputs=[input_image, resolution], outputs=[gallery])
|
| 255 |
-
run_button.click(fn=inpaint, inputs=[input_image, invert], outputs=[gallery])
|
| 256 |
-
|
| 257 |
-
gr.Markdown("<hr>")
|
| 258 |
-
with gr.Row():
|
| 259 |
-
gr.Markdown("## HED Edge "SoftEdge"")
|
| 260 |
-
with gr.Row():
|
| 261 |
-
with gr.Column():
|
| 262 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 263 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 264 |
-
run_button = gr.Button(label="Run")
|
| 265 |
-
with gr.Column():
|
| 266 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 267 |
-
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])
|
| 268 |
-
|
| 269 |
-
gr.Markdown("<hr>")
|
| 270 |
-
with gr.Row():
|
| 271 |
-
gr.Markdown("## Pidi Edge "SoftEdge"")
|
| 272 |
-
with gr.Row():
|
| 273 |
-
with gr.Column():
|
| 274 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 275 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 276 |
-
run_button = gr.Button(label="Run")
|
| 277 |
-
with gr.Column():
|
| 278 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 279 |
-
run_button.click(fn=pidi, inputs=[input_image, resolution], outputs=[gallery])
|
| 280 |
-
|
| 281 |
-
gr.Markdown("<hr>")
|
| 282 |
-
with gr.Row():
|
| 283 |
-
gr.Markdown("## MLSD Edge")
|
| 284 |
-
with gr.Row():
|
| 285 |
-
with gr.Column():
|
| 286 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 287 |
-
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
|
| 288 |
-
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
|
| 289 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
| 290 |
-
run_button = gr.Button(label="Run")
|
| 291 |
-
with gr.Column():
|
| 292 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 293 |
-
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])
|
| 294 |
-
|
| 295 |
-
gr.Markdown("<hr>")
|
| 296 |
-
with gr.Row():
|
| 297 |
-
gr.Markdown("## MIDAS Depth")
|
| 298 |
-
with gr.Row():
|
| 299 |
-
with gr.Column():
|
| 300 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 301 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
| 302 |
-
run_button = gr.Button(label="Run")
|
| 303 |
-
with gr.Column():
|
| 304 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 305 |
-
run_button.click(fn=midas, inputs=[input_image, resolution], outputs=[gallery])
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
gr.Markdown("<hr>")
|
| 309 |
-
with gr.Row():
|
| 310 |
-
gr.Markdown("## Zoe Depth")
|
| 311 |
-
with gr.Row():
|
| 312 |
-
with gr.Column():
|
| 313 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 314 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 315 |
-
run_button = gr.Button(label="Run")
|
| 316 |
-
with gr.Column():
|
| 317 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 318 |
-
run_button.click(fn=zoe, inputs=[input_image, resolution], outputs=[gallery])
|
| 319 |
-
|
| 320 |
-
gr.Markdown("<hr>")
|
| 321 |
-
with gr.Row():
|
| 322 |
-
gr.Markdown("## Normal Bae")
|
| 323 |
-
with gr.Row():
|
| 324 |
-
with gr.Column():
|
| 325 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 326 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 327 |
-
run_button = gr.Button(label="Run")
|
| 328 |
-
with gr.Column():
|
| 329 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 330 |
-
run_button.click(fn=normalbae, inputs=[input_image, resolution], outputs=[gallery])
|
| 331 |
-
|
| 332 |
-
gr.Markdown("<hr>")
|
| 333 |
-
with gr.Row():
|
| 334 |
-
gr.Markdown("## Openpose")
|
| 335 |
-
with gr.Row():
|
| 336 |
-
with gr.Column():
|
| 337 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 338 |
-
hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
|
| 339 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 340 |
-
run_button = gr.Button(label="Run")
|
| 341 |
-
with gr.Column():
|
| 342 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 343 |
-
run_button.click(fn=openpose, inputs=[input_image, resolution, hand_and_face], outputs=[gallery])
|
| 344 |
-
|
| 345 |
-
gr.Markdown("<hr>")
|
| 346 |
-
with gr.Row():
|
| 347 |
-
gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
|
| 348 |
-
with gr.Row():
|
| 349 |
-
with gr.Column():
|
| 350 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 351 |
-
invert = gr.Checkbox(label='Invert', value=True)
|
| 352 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 353 |
-
run_button = gr.Button(label="Run")
|
| 354 |
-
with gr.Column():
|
| 355 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 356 |
-
run_button.click(fn=lineart_anime, inputs=[input_image, resolution, invert], outputs=[gallery])
|
| 357 |
-
|
| 358 |
-
gr.Markdown("<hr>")
|
| 359 |
-
with gr.Row():
|
| 360 |
-
gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion. Inverted image can also be created here for use with ControlNet Scribble.")
|
| 361 |
-
with gr.Row():
|
| 362 |
-
with gr.Column():
|
| 363 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 364 |
-
coarse = gr.Checkbox(label='Using coarse model', value=False)
|
| 365 |
-
invert = gr.Checkbox(label='Invert', value=True)
|
| 366 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 367 |
-
run_button = gr.Button(label="Run")
|
| 368 |
-
with gr.Column():
|
| 369 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 370 |
-
run_button.click(fn=lineart, inputs=[input_image, resolution, coarse, invert], outputs=[gallery])
|
| 371 |
-
|
| 372 |
-
# with gr.Row():
|
| 373 |
-
# gr.Markdown("## Uniformer Segmentation")
|
| 374 |
-
# with gr.Row():
|
| 375 |
-
# with gr.Column():
|
| 376 |
-
# input_image = gr.Image(source='upload', type="numpy")
|
| 377 |
-
# resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 378 |
-
# run_button = gr.Button(label="Run")
|
| 379 |
-
# with gr.Column():
|
| 380 |
-
# gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 381 |
-
# run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])
|
| 382 |
-
|
| 383 |
-
gr.Markdown("<hr>")
|
| 384 |
-
with gr.Row():
|
| 385 |
-
gr.Markdown("## Oneformer COCO Segmentation")
|
| 386 |
-
with gr.Row():
|
| 387 |
-
with gr.Column():
|
| 388 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 389 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 390 |
-
run_button = gr.Button(label="Run")
|
| 391 |
-
with gr.Column():
|
| 392 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 393 |
-
run_button.click(fn=oneformer_coco, inputs=[input_image, resolution], outputs=[gallery])
|
| 394 |
-
|
| 395 |
-
gr.Markdown("<hr>")
|
| 396 |
-
with gr.Row():
|
| 397 |
-
gr.Markdown("## Oneformer ADE20K Segmentation")
|
| 398 |
-
with gr.Row():
|
| 399 |
-
with gr.Column():
|
| 400 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 401 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
|
| 402 |
-
run_button = gr.Button(label="Run")
|
| 403 |
-
with gr.Column():
|
| 404 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 405 |
-
run_button.click(fn=oneformer_ade20k, inputs=[input_image, resolution], outputs=[gallery])
|
| 406 |
-
|
| 407 |
-
gr.Markdown("<hr>")
|
| 408 |
-
with gr.Row():
|
| 409 |
-
gr.Markdown("## Content Shuffle")
|
| 410 |
-
with gr.Row():
|
| 411 |
-
with gr.Column():
|
| 412 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 413 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 414 |
-
run_button = gr.Button(label="Run")
|
| 415 |
-
with gr.Column():
|
| 416 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 417 |
-
run_button.click(fn=content_shuffler, inputs=[input_image, resolution], outputs=[gallery])
|
| 418 |
-
|
| 419 |
-
gr.Markdown("<hr>")
|
| 420 |
-
with gr.Row():
|
| 421 |
-
gr.Markdown("## Color Shuffle")
|
| 422 |
-
with gr.Row():
|
| 423 |
-
with gr.Column():
|
| 424 |
-
input_image = gr.Image(source='upload', type="numpy")
|
| 425 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
| 426 |
-
run_button = gr.Button(label="Run")
|
| 427 |
-
with gr.Column():
|
| 428 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
| 429 |
-
run_button.click(fn=color_shuffler, inputs=[input_image, resolution], outputs=[gallery])
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
block.launch(server_name='0.0.0.0')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|