import os from PIL import Image from unsloth import FastVisionModel import torch class AtlasOCR: def __init__(self, model_name: str="atlasia/AtlasOCR-v0", max_tokens: int=2000): self.model, self.processor = FastVisionModel.from_pretrained( model_name, device_map="auto", load_in_4bit=True, use_gradient_checkpointing="unsloth" ) self.max_tokens = max_tokens self.prompt = "" def prepare_inputs(self,image:Image): messages = [ { "role": "user", "content": [ { "type": "image", }, {"type": "text", "text": self.prompt}, ], } ] text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.processor( image, text, add_special_tokens=False, return_tensors="pt", ) return inputs def predict(self,image:Image) -> str: inputs = self.prepare_inputs(image) inputs = inputs.to("cuda") inputs['attention_mask'] = inputs['attention_mask'].to(torch.float32) print("attention_mask dtype:", inputs['attention_mask'].dtype) generated_ids = self.model.generate(**inputs, max_new_tokens=self.max_tokens, use_cache=True) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] def __call__(self, _: str, image: Image) -> str: return self.predict(image)