Spaces:
Running
Running
File size: 25,779 Bytes
6f92421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import streamlit as st
import pandas as pd
import json
import os
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
from pathlib import Path
import glob
import requests
from io import StringIO
import zipfile
import tempfile
import shutil
# Set page config
st.set_page_config(
page_title="Attention Analysis Results Explorer",
page_icon="🔍",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: bold;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.section-header {
font-size: 1.5rem;
font-weight: bold;
color: #ff7f0e;
margin-top: 2rem;
margin-bottom: 1rem;
}
.metric-container {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
.stSelectbox > div > div {
background-color: white;
}
</style>
""", unsafe_allow_html=True)
class AttentionResultsExplorer:
def __init__(self, github_repo="ACMCMC/attention", use_cache=True):
self.github_repo = github_repo
self.use_cache = use_cache
self.cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
self.base_path = self.cache_dir
# Initialize cache directory
if not self.cache_dir.exists():
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Download and cache data if needed
if not self._cache_exists() or not use_cache:
self._download_repository()
self.languages = self._get_available_languages()
self.relation_types = None
def _cache_exists(self):
"""Check if cached data exists"""
return (self.cache_dir / "results_en").exists()
def _download_repository(self):
"""Download repository data from GitHub"""
st.info("🔄 Downloading results data from GitHub... This may take a moment.")
# GitHub API to get the repository contents
api_url = f"https://api.github.com/repos/{self.github_repo}/contents"
try:
# Get list of result directories
response = requests.get(api_url)
response.raise_for_status()
contents = response.json()
result_dirs = [item['name'] for item in contents
if item['type'] == 'dir' and item['name'].startswith('results_')]
st.write(f"Found {len(result_dirs)} result directories: {', '.join(result_dirs)}")
# Download each result directory
progress_bar = st.progress(0)
for i, result_dir in enumerate(result_dirs):
st.write(f"Downloading {result_dir}...")
self._download_directory(result_dir)
progress_bar.progress((i + 1) / len(result_dirs))
st.success("✅ Download completed!")
except Exception as e:
st.error(f"❌ Error downloading repository: {str(e)}")
st.error("Please check the repository URL and your internet connection.")
raise
def _download_directory(self, dir_name, path=""):
"""Recursively download a directory from GitHub"""
url = f"https://api.github.com/repos/{self.github_repo}/contents/{path}{dir_name}"
try:
response = requests.get(url)
response.raise_for_status()
contents = response.json()
local_dir = self.cache_dir / path / dir_name
local_dir.mkdir(parents=True, exist_ok=True)
for item in contents:
if item['type'] == 'file':
self._download_file(item, local_dir)
elif item['type'] == 'dir':
self._download_directory(item['name'], f"{path}{dir_name}/")
except Exception as e:
st.warning(f"Could not download {dir_name}: {str(e)}")
def _download_file(self, file_info, local_dir):
"""Download a single file from GitHub"""
try:
# Download file content
response = requests.get(file_info['download_url'])
response.raise_for_status()
# Save to local cache
local_file = local_dir / file_info['name']
# Handle different file types
if file_info['name'].endswith(('.csv', '.json')):
with open(local_file, 'w', encoding='utf-8') as f:
f.write(response.text)
else: # Binary files like PDFs
with open(local_file, 'wb') as f:
f.write(response.content)
except Exception as e:
st.warning(f"Could not download file {file_info['name']}: {str(e)}")
def _get_available_languages(self):
"""Get all available language directories"""
if not self.base_path.exists():
return []
result_dirs = [d.name for d in self.base_path.iterdir()
if d.is_dir() and d.name.startswith("results_")]
languages = [d.replace("results_", "") for d in result_dirs]
return sorted(languages)
def _get_experimental_configs(self, language):
"""Get all experimental configurations for a language"""
lang_dir = self.base_path / f"results_{language}"
if not lang_dir.exists():
return []
configs = [d.name for d in lang_dir.iterdir() if d.is_dir()]
return sorted(configs)
def _get_models(self, language, config):
"""Get all models for a language and configuration"""
config_dir = self.base_path / f"results_{language}" / config
if not config_dir.exists():
return []
models = [d.name for d in config_dir.iterdir() if d.is_dir()]
return sorted(models)
def _parse_config_name(self, config_name):
"""Parse configuration name into readable format"""
parts = config_name.split('+')
config_dict = {}
for part in parts:
if '_' in part:
key, value = part.split('_', 1)
config_dict[key.replace('_', ' ').title()] = value
return config_dict
def _load_metadata(self, language, config, model):
"""Load metadata for a specific combination"""
metadata_path = self.base_path / f"results_{language}" / config / model / "metadata" / "metadata.json"
if metadata_path.exists():
with open(metadata_path, 'r') as f:
return json.load(f)
return None
def _load_uas_scores(self, language, config, model):
"""Load UAS scores data"""
uas_dir = self.base_path / f"results_{language}" / config / model / "uas_scores"
if not uas_dir.exists():
return {}
uas_data = {}
csv_files = list(uas_dir.glob("uas_*.csv"))
if csv_files:
progress_bar = st.progress(0)
status_text = st.empty()
for i, csv_file in enumerate(csv_files):
relation = csv_file.stem.replace("uas_", "")
status_text.text(f"Loading UAS data: {relation}")
try:
df = pd.read_csv(csv_file, index_col=0)
uas_data[relation] = df
except Exception as e:
st.warning(f"Could not load {csv_file.name}: {e}")
progress_bar.progress((i + 1) / len(csv_files))
progress_bar.empty()
status_text.empty()
return uas_data
def _load_head_matching(self, language, config, model):
"""Load head matching data"""
heads_dir = self.base_path / f"results_{language}" / config / model / "number_of_heads_matching"
if not heads_dir.exists():
return {}
heads_data = {}
csv_files = list(heads_dir.glob("heads_matching_*.csv"))
if csv_files:
progress_bar = st.progress(0)
status_text = st.empty()
for i, csv_file in enumerate(csv_files):
relation = csv_file.stem.replace("heads_matching_", "").replace(f"_{model}", "")
status_text.text(f"Loading head matching data: {relation}")
try:
df = pd.read_csv(csv_file, index_col=0)
heads_data[relation] = df
except Exception as e:
st.warning(f"Could not load {csv_file.name}: {e}")
progress_bar.progress((i + 1) / len(csv_files))
progress_bar.empty()
status_text.empty()
return heads_data
def _load_variability(self, language, config, model):
"""Load variability data"""
var_path = self.base_path / f"results_{language}" / config / model / "variability" / "variability_list.csv"
if var_path.exists():
try:
return pd.read_csv(var_path, index_col=0)
except Exception as e:
st.warning(f"Could not load variability data: {e}")
return None
def _get_available_figures(self, language, config, model):
"""Get all available figure files"""
figures_dir = self.base_path / f"results_{language}" / config / model / "figures"
if not figures_dir.exists():
return []
return list(figures_dir.glob("*.pdf"))
def main():
# Title
st.markdown('<div class="main-header">🔍 Attention Analysis Results Explorer</div>', unsafe_allow_html=True)
# Sidebar for navigation
st.sidebar.title("🔧 Configuration")
# Cache management section
st.sidebar.markdown("### 📁 Data Management")
# Initialize explorer
use_cache = st.sidebar.checkbox("Use cached data", value=True,
help="Use previously downloaded data if available")
if st.sidebar.button("🔄 Refresh Data", help="Download fresh data from GitHub"):
# Clear cache and re-download
cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
if cache_dir.exists():
shutil.rmtree(cache_dir)
st.rerun()
# Show cache status
cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
if cache_dir.exists():
st.sidebar.success("✅ Data cached locally")
else:
st.sidebar.info("📥 Will download data from GitHub")
st.sidebar.markdown("---")
# Initialize explorer with error handling
try:
explorer = AttentionResultsExplorer(use_cache=use_cache)
except Exception as e:
st.error(f"❌ Failed to initialize data explorer: {str(e)}")
st.error("Please check your internet connection and try again.")
return
# Check if any languages are available
if not explorer.languages:
st.error("❌ No result data found. Please check the GitHub repository.")
return
# Language selection
selected_language = st.sidebar.selectbox(
"Select Language",
options=explorer.languages,
help="Choose the language dataset to explore"
)
# Get configurations for selected language
configs = explorer._get_experimental_configs(selected_language)
if not configs:
st.error(f"No configurations found for language: {selected_language}")
return
# Configuration selection
selected_config = st.sidebar.selectbox(
"Select Experimental Configuration",
options=configs,
help="Choose the experimental configuration"
)
# Parse and display configuration details
config_details = explorer._parse_config_name(selected_config)
st.sidebar.markdown("**Configuration Details:**")
for key, value in config_details.items():
st.sidebar.markdown(f"- **{key}**: {value}")
# Get models for selected language and config
models = explorer._get_models(selected_language, selected_config)
if not models:
st.error(f"No models found for {selected_language}/{selected_config}")
return
# Model selection
selected_model = st.sidebar.selectbox(
"Select Model",
options=models,
help="Choose the model to analyze"
)
# Main content area
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"📊 Overview",
"🎯 UAS Scores",
"🧠 Head Matching",
"📈 Variability",
"🖼️ Figures"
])
# Tab 1: Overview
with tab1:
st.markdown('<div class="section-header">Experiment Overview</div>', unsafe_allow_html=True)
# Load metadata
metadata = explorer._load_metadata(selected_language, selected_config, selected_model)
if metadata:
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Samples", metadata.get('total_number', 'N/A'))
with col2:
st.metric("Processed Correctly", metadata.get('number_processed_correctly', 'N/A'))
with col3:
st.metric("Errors", metadata.get('number_errored', 'N/A'))
with col4:
success_rate = (metadata.get('number_processed_correctly', 0) /
metadata.get('total_number', 1)) * 100 if metadata.get('total_number') else 0
st.metric("Success Rate", f"{success_rate:.1f}%")
st.markdown("**Random Seed:**", metadata.get('random_seed', 'N/A'))
if metadata.get('errored_phrases'):
st.markdown("**Errored Phrase IDs:**")
st.write(metadata['errored_phrases'])
else:
st.warning("No metadata available for this configuration.")
# Quick stats about available data
st.markdown('<div class="section-header">Available Data</div>', unsafe_allow_html=True)
uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model)
heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model)
variability_data = explorer._load_variability(selected_language, selected_config, selected_model)
figures = explorer._get_available_figures(selected_language, selected_config, selected_model)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("UAS Relations", len(uas_data))
with col2:
st.metric("Head Matching Relations", len(heads_data))
with col3:
st.metric("Variability Data", "✓" if variability_data is not None else "✗")
with col4:
st.metric("Figure Files", len(figures))
# Tab 2: UAS Scores
with tab2:
st.markdown('<div class="section-header">UAS (Unlabeled Attachment Score) Analysis</div>', unsafe_allow_html=True)
uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model)
if uas_data:
# Relation selection
selected_relation = st.selectbox(
"Select Dependency Relation",
options=list(uas_data.keys()),
help="Choose a dependency relation to visualize UAS scores"
)
if selected_relation and selected_relation in uas_data:
df = uas_data[selected_relation]
# Display the data table
st.markdown("**UAS Scores Matrix (Layer × Head)**")
st.dataframe(df, use_container_width=True)
# Create heatmap
fig = px.imshow(
df.values,
x=[f"Head {i}" for i in df.columns],
y=[f"Layer {i}" for i in df.index],
color_continuous_scale="Viridis",
title=f"UAS Scores Heatmap - {selected_relation}",
labels=dict(color="UAS Score")
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Statistics
st.markdown("**Statistics**")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Max Score", f"{df.values.max():.4f}")
with col2:
st.metric("Min Score", f"{df.values.min():.4f}")
with col3:
st.metric("Mean Score", f"{df.values.mean():.4f}")
with col4:
st.metric("Std Dev", f"{df.values.std():.4f}")
else:
st.warning("No UAS score data available for this configuration.")
# Tab 3: Head Matching
with tab3:
st.markdown('<div class="section-header">Attention Head Matching Analysis</div>', unsafe_allow_html=True)
heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model)
if heads_data:
# Relation selection
selected_relation = st.selectbox(
"Select Dependency Relation",
options=list(heads_data.keys()),
help="Choose a dependency relation to visualize head matching patterns",
key="heads_relation"
)
if selected_relation and selected_relation in heads_data:
df = heads_data[selected_relation]
# Display the data table
st.markdown("**Head Matching Counts Matrix (Layer × Head)**")
st.dataframe(df, use_container_width=True)
# Create heatmap
fig = px.imshow(
df.values,
x=[f"Head {i}" for i in df.columns],
y=[f"Layer {i}" for i in df.index],
color_continuous_scale="Blues",
title=f"Head Matching Counts - {selected_relation}",
labels=dict(color="Match Count")
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Create bar chart of total matches per layer
layer_totals = df.sum(axis=1)
fig_bar = px.bar(
x=layer_totals.index,
y=layer_totals.values,
title=f"Total Matches per Layer - {selected_relation}",
labels={"x": "Layer", "y": "Total Matches"}
)
fig_bar.update_layout(height=400)
st.plotly_chart(fig_bar, use_container_width=True)
# Statistics
st.markdown("**Statistics**")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Matches", int(df.values.sum()))
with col2:
st.metric("Max per Cell", int(df.values.max()))
with col3:
best_layer = layer_totals.idxmax()
st.metric("Best Layer", f"Layer {best_layer}")
with col4:
best_head_idx = np.unravel_index(df.values.argmax(), df.values.shape)
st.metric("Best Head", f"L{best_head_idx[0]}-H{best_head_idx[1]}")
else:
st.warning("No head matching data available for this configuration.")
# Tab 4: Variability
with tab4:
st.markdown('<div class="section-header">Attention Variability Analysis</div>', unsafe_allow_html=True)
variability_data = explorer._load_variability(selected_language, selected_config, selected_model)
if variability_data is not None:
# Display the data table
st.markdown("**Variability Matrix (Layer × Head)**")
st.dataframe(variability_data, use_container_width=True)
# Create heatmap
fig = px.imshow(
variability_data.values,
x=[f"Head {i}" for i in variability_data.columns],
y=[f"Layer {i}" for i in variability_data.index],
color_continuous_scale="Reds",
title="Attention Variability Heatmap",
labels=dict(color="Variability Score")
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Create line plot for variability trends
fig_line = go.Figure()
for col in variability_data.columns:
fig_line.add_trace(go.Scatter(
x=variability_data.index,
y=variability_data[col],
mode='lines+markers',
name=f'Head {col}',
line=dict(width=2)
))
fig_line.update_layout(
title="Variability Trends Across Layers",
xaxis_title="Layer",
yaxis_title="Variability Score",
height=500
)
st.plotly_chart(fig_line, use_container_width=True)
# Statistics
st.markdown("**Statistics**")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Max Variability", f"{variability_data.values.max():.4f}")
with col2:
st.metric("Min Variability", f"{variability_data.values.min():.4f}")
with col3:
st.metric("Mean Variability", f"{variability_data.values.mean():.4f}")
with col4:
most_variable_idx = np.unravel_index(variability_data.values.argmax(), variability_data.values.shape)
st.metric("Most Variable", f"L{most_variable_idx[0]}-H{most_variable_idx[1]}")
else:
st.warning("No variability data available for this configuration.")
# Tab 5: Figures
with tab5:
st.markdown('<div class="section-header">Generated Figures</div>', unsafe_allow_html=True)
figures = explorer._get_available_figures(selected_language, selected_config, selected_model)
if figures:
st.markdown(f"**Available Figures: {len(figures)}**")
# Group figures by relation type
figure_groups = {}
for fig_path in figures:
# Extract relation from filename
filename = fig_path.stem
relation = filename.replace("heads_matching_", "").replace(f"_{selected_model}", "")
if relation not in figure_groups:
figure_groups[relation] = []
figure_groups[relation].append(fig_path)
# Select relation to view
selected_fig_relation = st.selectbox(
"Select Relation for Figure View",
options=list(figure_groups.keys()),
help="Choose a dependency relation to view its figure"
)
if selected_fig_relation and selected_fig_relation in figure_groups:
fig_path = figure_groups[selected_fig_relation][0]
st.markdown(f"**Figure: {fig_path.name}**")
st.markdown(f"**Path:** `{fig_path}`")
# Note about PDF viewing
st.info(
"📄 PDF figures are available in the results directory. "
"Due to Streamlit limitations, PDF files cannot be displayed directly in the browser. "
"You can download or view them locally."
)
# Provide download link
try:
with open(fig_path, "rb") as file:
st.download_button(
label=f"📥 Download {fig_path.name}",
data=file.read(),
file_name=fig_path.name,
mime="application/pdf"
)
except Exception as e:
st.error(f"Could not load figure: {e}")
# List all available figures
st.markdown("**All Available Figures:**")
for relation, paths in figure_groups.items():
with st.expander(f"📊 {relation} ({len(paths)} files)"):
for path in paths:
st.markdown(f"- `{path.name}`")
else:
st.warning("No figures available for this configuration.")
# Footer
st.markdown("---")
# Data source information
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(
"🔬 **Attention Analysis Results Explorer** | "
f"Currently viewing: {selected_language.upper()} - {selected_model} | "
"Built with Streamlit"
)
with col2:
st.markdown(
f"📊 **Data Source**: [GitHub Repository](https://github.com/{explorer.github_repo})"
)
if __name__ == "__main__":
main()
|