Spaces:
Running
on
Zero
Running
on
Zero
import os | |
os.environ['HF_HOME'] = os.path.abspath( | |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')) | |
) | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
import spaces | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import ( | |
LlamaModel, CLIPTextModel, | |
LlamaTokenizerFast, CLIPTokenizer | |
) | |
from diffusers_helper.hunyuan import ( | |
encode_prompt_conds, vae_decode, | |
vae_encode, vae_decode_fake | |
) | |
from diffusers_helper.utils import ( | |
save_bcthw_as_mp4, crop_or_pad_yield_mask, | |
soft_append_bcthw, resize_and_center_crop, | |
state_dict_weighted_merge, state_dict_offset_merge, | |
generate_timestamp | |
) | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import ( | |
cpu, gpu, | |
get_cuda_free_memory_gb, | |
move_model_to_device_with_memory_preservation, | |
offload_model_from_device_for_memory_preservation, | |
fake_diffusers_current_device, | |
DynamicSwapInstaller, | |
unload_complete_models, | |
load_model_as_complete | |
) | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
# Check GPU memory | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
high_vram = free_mem_gb > 60 | |
print(f'Free VRAM {free_mem_gb} GB') | |
print(f'High-VRAM Mode: {high_vram}') | |
# Load models | |
text_encoder = LlamaModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder', | |
torch_dtype=torch.float16 | |
).cpu() | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='text_encoder_2', | |
torch_dtype=torch.float16 | |
).cpu() | |
tokenizer = LlamaTokenizerFast.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer' | |
) | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='tokenizer_2' | |
) | |
vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", | |
subfolder='vae', | |
torch_dtype=torch.float16 | |
).cpu() | |
feature_extractor = SiglipImageProcessor.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='feature_extractor' | |
) | |
image_encoder = SiglipVisionModel.from_pretrained( | |
"lllyasviel/flux_redux_bfl", | |
subfolder='image_encoder', | |
torch_dtype=torch.float16 | |
).cpu() | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
'lllyasviel/FramePack_F1_I2V_HY_20250503', | |
torch_dtype=torch.bfloat16 | |
).cpu() | |
# Evaluation mode | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
# Slicing/Tiling for low VRAM | |
if not high_vram: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print('transformer.high_quality_fp32_output_for_inference = True') | |
# Move to correct dtype | |
transformer.to(dtype=torch.bfloat16) | |
vae.to(dtype=torch.float16) | |
image_encoder.to(dtype=torch.float16) | |
text_encoder.to(dtype=torch.float16) | |
text_encoder_2.to(dtype=torch.float16) | |
# No gradient | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
# DynamicSwap if low VRAM | |
if not high_vram: | |
DynamicSwapInstaller.install_model(transformer, device=gpu) | |
DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
else: | |
text_encoder.to(gpu) | |
text_encoder_2.to(gpu) | |
image_encoder.to(gpu) | |
vae.to(gpu) | |
transformer.to(gpu) | |
stream = AsyncStream() | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
examples = [ | |
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."], | |
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."], | |
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."] | |
] | |
# Example generation (optional) | |
def generate_examples(input_image, prompt): | |
t2v=False | |
n_prompt="" | |
seed=31337 | |
total_second_length=60 | |
latent_window_size=9 | |
steps=25 | |
cfg=1.0 | |
gs=10.0 | |
rs=0.0 | |
gpu_memory_preservation=6 | |
use_teacache=True | |
mp4_crf=16 | |
global stream | |
if t2v: | |
default_height, default_width = 640, 640 | |
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 | |
print("No input image provided. Using a blank white image.") | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
stream = AsyncStream() | |
async_run( | |
worker, input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
) | |
output_filename = None | |
while True: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
yield ( | |
output_filename, | |
gr.update(), | |
gr.update(), | |
gr.update(), | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield ( | |
gr.update(), | |
gr.update(visible=True, value=preview), | |
desc, | |
html, | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
if flag == 'end': | |
yield ( | |
output_filename, | |
gr.update(visible=False), | |
gr.update(), | |
'', | |
gr.update(interactive=True), | |
gr.update(interactive=False) | |
) | |
break | |
def worker( | |
input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
): | |
# Calculate total sections | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
# Unload if VRAM is low | |
if not high_vram: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
# Text encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
if not high_vram: | |
fake_diffusers_current_device(text_encoder, gpu) | |
load_model_as_complete(text_encoder_2, target_device=gpu) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
# Process image | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
H, W, C = input_image.shape | |
height, width = find_nearest_bucket(H, W, resolution=640) | |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
# VAE encoding | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(vae, target_device=gpu) | |
start_latent = vae_encode(input_image_pt, vae) | |
# CLIP Vision | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
if not high_vram: | |
load_model_as_complete(image_encoder, target_device=gpu) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
# Convert dtype | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
# Start sampling | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
history_latents = torch.zeros( | |
size=(1, 16, 16 + 2 + 1, height // 8, width // 8), | |
dtype=torch.float32 | |
).cpu() | |
history_pixels = None | |
# Add start_latent | |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) | |
total_generated_latent_frames = 1 | |
for section_index in range(total_latent_sections): | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') | |
if not high_vram: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation( | |
transformer, target_device=gpu, | |
preserved_memory_gb=gpu_memory_preservation | |
) | |
if use_teacache: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
preview = d['denoised'] | |
preview = vae_decode_fake(preview) | |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
raise KeyboardInterrupt('User ends the task.') | |
current_step = d['i'] + 1 | |
percentage = int(100.0 * current_step / steps) | |
hint = f'Sampling {current_step}/{steps}' | |
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}' | |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
return | |
indices = torch.arange( | |
0, sum([1, 16, 2, 1, latent_window_size]) | |
).unsqueeze(0) | |
( | |
clean_latent_indices_start, | |
clean_latent_4x_indices, | |
clean_latent_2x_indices, | |
clean_latent_1x_indices, | |
latent_indices | |
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1) | |
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) | |
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[ | |
:, :, -sum([16, 2, 1]):, :, : | |
].split([16, 2, 1], dim=2) | |
clean_latents = torch.cat( | |
[start_latent.to(history_latents), clean_latents_1x], | |
dim=2 | |
) | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=width, | |
height=height, | |
frames=latent_window_size * 4 - 3, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=gpu, | |
dtype=torch.bfloat16, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=clean_latents_2x, | |
clean_latent_2x_indices=clean_latent_2x_indices, | |
clean_latents_4x=clean_latents_4x, | |
clean_latent_4x_indices=clean_latent_4x_indices, | |
callback=callback, | |
) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) | |
if not high_vram: | |
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) | |
load_model_as_complete(vae, target_device=gpu) | |
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = latent_window_size * 2 | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode( | |
real_history_latents[:, :, -section_latent_frames:], vae | |
).cpu() | |
history_pixels = soft_append_bcthw( | |
history_pixels, current_pixels, overlapped_frames | |
) | |
if not high_vram: | |
unload_complete_models() | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
stream.output_queue.push(('file', output_filename)) | |
except: | |
traceback.print_exc() | |
if not high_vram: | |
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) | |
stream.output_queue.push(('end', None)) | |
return | |
def get_duration( | |
input_image, prompt, t2v, n_prompt, | |
seed, total_second_length, latent_window_size, | |
steps, cfg, gs, rs, gpu_memory_preservation, | |
use_teacache, mp4_crf, quality_radio=None, aspect_ratio=None | |
): | |
# Accept extra arguments for compatibility with process() | |
return total_second_length * 60 | |
def process( | |
input_image, prompt, t2v=False, n_prompt="", seed=31337, | |
total_second_length=60, latent_window_size=9, steps=25, | |
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6, | |
use_teacache=True, mp4_crf=16, quality_radio="640x360", aspect_ratio="1:1" | |
): | |
global stream | |
quality_map = { | |
"360p": (640, 360), | |
"480p": (854, 480), | |
"540p": (960, 540), | |
"720p": (1280, 720), | |
"640x360": (640, 360), # fallback for default | |
} | |
# Aspect ratio map: (width, height) | |
aspect_map = { | |
"1:1": (1, 1), | |
"3:4": (3, 4), | |
"4:3": (4, 3), | |
"16:9": (16, 9), | |
"9:16": (9, 16), | |
} | |
selected_quality = quality_map.get(quality_radio, (640, 360)) | |
base_width, base_height = selected_quality | |
if t2v: | |
# Use aspect ratio to determine final width/height | |
ar_w, ar_h = aspect_map.get(aspect_ratio, (1, 1)) | |
if ar_w >= ar_h: | |
target_height = base_height | |
target_width = int(round(target_height * ar_w / ar_h)) | |
else: | |
target_width = base_width | |
target_height = int(round(target_width * ar_h / ar_w)) | |
input_image = np.ones((target_height, target_width, 3), dtype=np.uint8) * 255 | |
print(f"Using blank white image for text-to-video mode, {target_width}x{target_height} ({aspect_ratio})") | |
else: | |
target_width, target_height = selected_quality | |
if isinstance(input_image, dict) and "composite" in input_image: | |
composite_rgba_uint8 = input_image["composite"] | |
rgb_uint8 = composite_rgba_uint8[:, :, :3] | |
mask_uint8 = composite_rgba_uint8[:, :, 3] | |
h, w = rgb_uint8.shape[:2] | |
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8) | |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0 | |
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2) | |
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \ | |
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32) | |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8) | |
elif input_image is None: | |
raise ValueError("Please provide an input image or enable Text to Video mode") | |
else: | |
input_image = input_image.astype(np.uint8) | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
stream = AsyncStream() | |
async_run( | |
worker, input_image, prompt, n_prompt, seed, | |
total_second_length, latent_window_size, steps, | |
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
) | |
output_filename = None | |
while True: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
yield ( | |
output_filename, | |
gr.update(), | |
gr.update(), | |
gr.update(), | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
elif flag == 'progress': | |
preview, desc, html = data | |
yield ( | |
gr.update(), | |
gr.update(visible=True, value=preview), | |
desc, | |
html, | |
gr.update(interactive=False), | |
gr.update(interactive=True) | |
) | |
elif flag == 'end': | |
yield ( | |
output_filename, | |
gr.update(visible=False), | |
gr.update(), | |
'', | |
gr.update(interactive=True), | |
gr.update(interactive=False) | |
) | |
break | |
def end_process(): | |
stream.input_queue.push('end') | |
quick_prompts = [ | |
'The girl dances gracefully, with clear movements, full of charm.', | |
'A character doing some simple body movements.' | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
def make_custom_css(): | |
base_progress_css = make_progress_bar_css() | |
extra_css = """ | |
body { | |
background: #1a1b1e !important; | |
font-family: "Noto Sans", sans-serif; | |
color: #e0e0e0; | |
} | |
#title-container { | |
text-align: center; | |
padding: 20px 0; | |
margin-bottom: 30px; | |
} | |
#title-container h1 { | |
color: #4b9ffa; | |
font-size: 2.5rem; | |
margin: 0; | |
font-weight: 800; | |
} | |
#title-container p { | |
color: #e0e0e0; | |
} | |
.three-column-container { | |
display: flex; | |
gap: 20px; | |
min-height: 800px; | |
max-width: 1600px; | |
margin: 0 auto; | |
} | |
.settings-panel { | |
flex: 0 0 150px; | |
background: #2a2b2e; | |
padding: 12px; | |
border-radius: 15px; | |
border: 1px solid #3a3b3e; | |
} | |
.settings-panel .gr-slider { | |
width: calc(100% - 10px) !important; | |
} | |
.settings-panel label { | |
color: #e0e0e0 !important; | |
} | |
.settings-panel label span:first-child { | |
font-size: 0.9rem !important; | |
} | |
.main-panel { | |
flex: 1; | |
background: #2a2b2e; | |
padding: 20px; | |
border-radius: 15px; | |
border: 1px solid #3a3b3e; | |
display: flex; | |
flex-direction: column; | |
gap: 20px; | |
} | |
.output-panel { | |
flex: 1; | |
background: #2a2b2e; | |
padding: 20px; | |
border-radius: 15px; | |
border: 1px solid #3a3b3e; | |
display: flex; | |
flex-direction: column; | |
align-items: center; /* Center output content */ | |
gap: 20px; | |
} | |
.output-panel > div { | |
width: 100%; | |
max-width: 640px; /* Limit width for better centering */ | |
} | |
.settings-panel h3 { | |
color: #4b9ffa; | |
margin-bottom: 15px; | |
font-size: 1.1rem; | |
border-bottom: 2px solid #4b9ffa; | |
padding-bottom: 8px; | |
} | |
.prompt-container { | |
min-height: 200px; | |
} | |
.quick-prompts { | |
margin-top: 10px; | |
padding: 10px; | |
background: #1a1b1e; | |
border-radius: 10px; | |
} | |
.button-container { | |
display: flex; | |
gap: 10px; | |
margin: 15px 0; | |
justify-content: center; | |
width: 100%; | |
} | |
/* Override Gradio's default light theme */ | |
.gr-box { | |
background: #2a2b2e !important; | |
border-color: #3a3b3e !important; | |
} | |
.gr-input, .gr-textbox { | |
background: #1a1b1e !important; | |
border-color: #3a3b3e !important; | |
color: #e0e0e0 !important; | |
} | |
.gr-form { | |
background: transparent !important; | |
border: none !important; | |
} | |
.gr-label { | |
color: #e0e0e0 !important; | |
} | |
.gr-button { | |
background: #4b9ffa !important; | |
color: white !important; | |
} | |
.gr-button.secondary-btn { | |
background: #ff4d4d !important; | |
} | |
""" | |
return base_progress_css + extra_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
with gr.Group(elem_id="title-container"): | |
gr.Markdown("<h1>FramePack</h1>") | |
gr.Markdown( | |
"""Generate amazing animations from a single image using AI. | |
Just upload an image, write a prompt, and watch the magic happen!""" | |
) | |
with gr.Row(elem_classes="three-column-container"): | |
# Left Column - Settings | |
with gr.Column(elem_classes="settings-panel"): | |
gr.Markdown("### Generation Settings") | |
with gr.Group(): | |
total_second_length = gr.Slider( | |
label="Duration (Seconds)", | |
minimum=1, | |
maximum=10, | |
value=2, | |
step=1, | |
info='Length of generated video' | |
) | |
steps = gr.Slider( | |
label="Quality Steps", | |
minimum=1, | |
maximum=100, | |
value=25, | |
step=1, | |
info='25-30 recommended' | |
) | |
gs = gr.Slider( | |
label="Animation Strength", | |
minimum=1.0, | |
maximum=32.0, | |
value=10.0, | |
step=0.1, | |
info='8-12 recommended' | |
) | |
quality_radio = gr.Radio( | |
label="Video Quality (Resolution)", | |
choices=["360p", "480p", "540p", "720p"], | |
value="640x360", | |
info="Choose output video resolution" | |
) | |
# Aspect ratio dropdown, hidden by default | |
aspect_ratio = gr.Dropdown( | |
label="Aspect Ratio", | |
choices=["1:1", "3:4", "4:3", "16:9", "9:16"], | |
value="1:1", | |
visible=False, | |
info="Only applies to Text to Video mode" | |
) | |
gr.Markdown("### Advanced") | |
with gr.Group(): | |
t2v = gr.Checkbox( | |
label='Text to Video Mode', | |
value=False, | |
info='Generate without input image' | |
) | |
use_teacache = gr.Checkbox( | |
label='Fast Mode', | |
value=True, | |
info='Faster but may affect details' | |
) | |
gpu_memory_preservation = gr.Slider( | |
label="VRAM Usage", | |
minimum=6, | |
maximum=128, | |
value=6, | |
step=1 | |
) | |
seed = gr.Number( | |
label="Seed", | |
value=31337, | |
precision=0 | |
) | |
# Hidden settings | |
n_prompt = gr.Textbox(visible=False, value="") | |
latent_window_size = gr.Slider(visible=False, value=9) | |
cfg = gr.Slider(visible=False, value=1.0) | |
rs = gr.Slider(visible=False, value=0.0) | |
mp4_crf = gr.Number(visible=False, value=16) # <-- Add this hidden component | |
# Middle Column - Main Content | |
with gr.Column(elem_classes="main-panel"): | |
input_image = gr.Image( | |
label="Upload Your Image", | |
type="numpy", | |
height=320 | |
) | |
# Moved buttons here | |
with gr.Group(elem_classes="button-container"): | |
start_button = gr.Button( | |
value="▶️ Generate Animation", | |
elem_classes=["primary-btn"] | |
) | |
stop_button = gr.Button( | |
value="⏹️ Stop", | |
elem_classes=["secondary-btn"], | |
interactive=False | |
) | |
with gr.Group(elem_classes="prompt-container"): | |
prompt = gr.Textbox( | |
label="Describe the animation you want", | |
placeholder="E.g., The character dances gracefully with flowing movements...", | |
lines=4 | |
) | |
with gr.Group(elem_classes="quick-prompts"): | |
gr.Markdown("### 💡 Quick Prompts") | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Click to use', | |
samples_per_page=3, | |
components=[prompt] | |
) | |
# Right Column - Output | |
with gr.Column(elem_classes="output-panel"): | |
preview_image = gr.Image( | |
label="Generation Preview", | |
height=200, | |
visible=False | |
) | |
result_video = gr.Video( | |
label="Generated Animation", | |
autoplay=True, | |
show_share_button=True, | |
height=400, | |
loop=True | |
) | |
with gr.Group(elem_classes="progress-container"): | |
progress_desc = gr.Markdown( | |
elem_classes='no-generating-animation' | |
) | |
progress_bar = gr.HTML( | |
elem_classes='no-generating-animation' | |
) | |
# Setup callbacks | |
ips = [ | |
input_image, prompt, t2v, n_prompt, seed, | |
total_second_length, latent_window_size, | |
steps, cfg, gs, rs, gpu_memory_preservation, | |
use_teacache, mp4_crf, # Use the hidden component here | |
quality_radio, aspect_ratio | |
] | |
start_button.click( | |
fn=process, | |
inputs=ips, | |
outputs=[ | |
result_video, preview_image, | |
progress_desc, progress_bar, | |
start_button, stop_button | |
] | |
) | |
stop_button.click(fn=end_process) | |
example_quick_prompts.click( | |
fn=lambda x: x[0], | |
inputs=[example_quick_prompts], | |
outputs=prompt, | |
show_progress=False, | |
queue=False | |
) | |
# Show/hide aspect ratio dropdown based on t2v checkbox | |
def show_aspect_ratio(t2v_checked): | |
return gr.update(visible=bool(t2v_checked)) | |
t2v.change( | |
fn=show_aspect_ratio, | |
inputs=[t2v], | |
outputs=[aspect_ratio], | |
queue=False | |
) | |
block.launch(share=True) |