Framepacks / app.py
atunc29's picture
Update app.py
f991534 verified
import os
os.environ['HF_HOME'] = os.path.abspath(
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel,
LlamaTokenizerFast, CLIPTokenizer
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode,
vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask,
soft_append_bcthw, resize_and_center_crop,
state_dict_weighted_merge, state_dict_offset_merge,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu, gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# Check GPU memory
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
# Load models
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=torch.float16
).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=torch.float16
).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
'lllyasviel/FramePack_F1_I2V_HY_20250503',
torch_dtype=torch.bfloat16
).cpu()
# Evaluation mode
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
# Slicing/Tiling for low VRAM
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
# Move to correct dtype
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
# No gradient
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
# DynamicSwap if low VRAM
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
examples = [
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
]
# Example generation (optional)
def generate_examples(input_image, prompt):
t2v=False
n_prompt=""
seed=31337
total_second_length=60
latent_window_size=9
steps=25
cfg=1.0
gs=10.0
rs=0.0
gpu_memory_preservation=6
use_teacache=True
mp4_crf=16
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
@torch.no_grad()
def worker(
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
):
# Calculate total sections
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Unload if VRAM is low
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Process image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Convert dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Start sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = torch.zeros(
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
dtype=torch.float32
).cpu()
history_pixels = None
# Add start_latent
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=gpu,
preserved_memory_gb=gpu_memory_preservation
)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
indices = torch.arange(
0, sum([1, 16, 2, 1, latent_window_size])
).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
:, :, -sum([16, 2, 1]):, :, :
].split([16, 2, 1], dim=2)
clean_latents = torch.cat(
[start_latent.to(history_latents), clean_latents_1x],
dim=2
)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(
real_history_latents[:, :, -section_latent_frames:], vae
).cpu()
history_pixels = soft_append_bcthw(
history_pixels, current_pixels, overlapped_frames
)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
stream.output_queue.push(('end', None))
return
def get_duration(
input_image, prompt, t2v, n_prompt,
seed, total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf, quality_radio=None, aspect_ratio=None
):
# Accept extra arguments for compatibility with process()
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(
input_image, prompt, t2v=False, n_prompt="", seed=31337,
total_second_length=60, latent_window_size=9, steps=25,
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
use_teacache=True, mp4_crf=16, quality_radio="640x360", aspect_ratio="1:1"
):
global stream
quality_map = {
"360p": (640, 360),
"480p": (854, 480),
"540p": (960, 540),
"720p": (1280, 720),
"640x360": (640, 360), # fallback for default
}
# Aspect ratio map: (width, height)
aspect_map = {
"1:1": (1, 1),
"3:4": (3, 4),
"4:3": (4, 3),
"16:9": (16, 9),
"9:16": (9, 16),
}
selected_quality = quality_map.get(quality_radio, (640, 360))
base_width, base_height = selected_quality
if t2v:
# Use aspect ratio to determine final width/height
ar_w, ar_h = aspect_map.get(aspect_ratio, (1, 1))
if ar_w >= ar_h:
target_height = base_height
target_width = int(round(target_height * ar_w / ar_h))
else:
target_width = base_width
target_height = int(round(target_width * ar_h / ar_w))
input_image = np.ones((target_height, target_width, 3), dtype=np.uint8) * 255
print(f"Using blank white image for text-to-video mode, {target_width}x{target_height} ({aspect_ratio})")
else:
target_width, target_height = selected_quality
if isinstance(input_image, dict) and "composite" in input_image:
composite_rgba_uint8 = input_image["composite"]
rgb_uint8 = composite_rgba_uint8[:, :, :3]
mask_uint8 = composite_rgba_uint8[:, :, 3]
h, w = rgb_uint8.shape[:2]
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
elif input_image is None:
raise ValueError("Please provide an input image or enable Text to Video mode")
else:
input_image = input_image.astype(np.uint8)
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.'
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
base_progress_css = make_progress_bar_css()
extra_css = """
body {
background: #1a1b1e !important;
font-family: "Noto Sans", sans-serif;
color: #e0e0e0;
}
#title-container {
text-align: center;
padding: 20px 0;
margin-bottom: 30px;
}
#title-container h1 {
color: #4b9ffa;
font-size: 2.5rem;
margin: 0;
font-weight: 800;
}
#title-container p {
color: #e0e0e0;
}
.three-column-container {
display: flex;
gap: 20px;
min-height: 800px;
max-width: 1600px;
margin: 0 auto;
}
.settings-panel {
flex: 0 0 150px;
background: #2a2b2e;
padding: 12px;
border-radius: 15px;
border: 1px solid #3a3b3e;
}
.settings-panel .gr-slider {
width: calc(100% - 10px) !important;
}
.settings-panel label {
color: #e0e0e0 !important;
}
.settings-panel label span:first-child {
font-size: 0.9rem !important;
}
.main-panel {
flex: 1;
background: #2a2b2e;
padding: 20px;
border-radius: 15px;
border: 1px solid #3a3b3e;
display: flex;
flex-direction: column;
gap: 20px;
}
.output-panel {
flex: 1;
background: #2a2b2e;
padding: 20px;
border-radius: 15px;
border: 1px solid #3a3b3e;
display: flex;
flex-direction: column;
align-items: center; /* Center output content */
gap: 20px;
}
.output-panel > div {
width: 100%;
max-width: 640px; /* Limit width for better centering */
}
.settings-panel h3 {
color: #4b9ffa;
margin-bottom: 15px;
font-size: 1.1rem;
border-bottom: 2px solid #4b9ffa;
padding-bottom: 8px;
}
.prompt-container {
min-height: 200px;
}
.quick-prompts {
margin-top: 10px;
padding: 10px;
background: #1a1b1e;
border-radius: 10px;
}
.button-container {
display: flex;
gap: 10px;
margin: 15px 0;
justify-content: center;
width: 100%;
}
/* Override Gradio's default light theme */
.gr-box {
background: #2a2b2e !important;
border-color: #3a3b3e !important;
}
.gr-input, .gr-textbox {
background: #1a1b1e !important;
border-color: #3a3b3e !important;
color: #e0e0e0 !important;
}
.gr-form {
background: transparent !important;
border: none !important;
}
.gr-label {
color: #e0e0e0 !important;
}
.gr-button {
background: #4b9ffa !important;
color: white !important;
}
.gr-button.secondary-btn {
background: #ff4d4d !important;
}
"""
return base_progress_css + extra_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
with gr.Group(elem_id="title-container"):
gr.Markdown("<h1>FramePack</h1>")
gr.Markdown(
"""Generate amazing animations from a single image using AI.
Just upload an image, write a prompt, and watch the magic happen!"""
)
with gr.Row(elem_classes="three-column-container"):
# Left Column - Settings
with gr.Column(elem_classes="settings-panel"):
gr.Markdown("### Generation Settings")
with gr.Group():
total_second_length = gr.Slider(
label="Duration (Seconds)",
minimum=1,
maximum=10,
value=2,
step=1,
info='Length of generated video'
)
steps = gr.Slider(
label="Quality Steps",
minimum=1,
maximum=100,
value=25,
step=1,
info='25-30 recommended'
)
gs = gr.Slider(
label="Animation Strength",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.1,
info='8-12 recommended'
)
quality_radio = gr.Radio(
label="Video Quality (Resolution)",
choices=["360p", "480p", "540p", "720p"],
value="640x360",
info="Choose output video resolution"
)
# Aspect ratio dropdown, hidden by default
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1", "3:4", "4:3", "16:9", "9:16"],
value="1:1",
visible=False,
info="Only applies to Text to Video mode"
)
gr.Markdown("### Advanced")
with gr.Group():
t2v = gr.Checkbox(
label='Text to Video Mode',
value=False,
info='Generate without input image'
)
use_teacache = gr.Checkbox(
label='Fast Mode',
value=True,
info='Faster but may affect details'
)
gpu_memory_preservation = gr.Slider(
label="VRAM Usage",
minimum=6,
maximum=128,
value=6,
step=1
)
seed = gr.Number(
label="Seed",
value=31337,
precision=0
)
# Hidden settings
n_prompt = gr.Textbox(visible=False, value="")
latent_window_size = gr.Slider(visible=False, value=9)
cfg = gr.Slider(visible=False, value=1.0)
rs = gr.Slider(visible=False, value=0.0)
mp4_crf = gr.Number(visible=False, value=16) # <-- Add this hidden component
# Middle Column - Main Content
with gr.Column(elem_classes="main-panel"):
input_image = gr.Image(
label="Upload Your Image",
type="numpy",
height=320
)
# Moved buttons here
with gr.Group(elem_classes="button-container"):
start_button = gr.Button(
value="▶️ Generate Animation",
elem_classes=["primary-btn"]
)
stop_button = gr.Button(
value="⏹️ Stop",
elem_classes=["secondary-btn"],
interactive=False
)
with gr.Group(elem_classes="prompt-container"):
prompt = gr.Textbox(
label="Describe the animation you want",
placeholder="E.g., The character dances gracefully with flowing movements...",
lines=4
)
with gr.Group(elem_classes="quick-prompts"):
gr.Markdown("### 💡 Quick Prompts")
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Click to use',
samples_per_page=3,
components=[prompt]
)
# Right Column - Output
with gr.Column(elem_classes="output-panel"):
preview_image = gr.Image(
label="Generation Preview",
height=200,
visible=False
)
result_video = gr.Video(
label="Generated Animation",
autoplay=True,
show_share_button=True,
height=400,
loop=True
)
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown(
elem_classes='no-generating-animation'
)
progress_bar = gr.HTML(
elem_classes='no-generating-animation'
)
# Setup callbacks
ips = [
input_image, prompt, t2v, n_prompt, seed,
total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf, # Use the hidden component here
quality_radio, aspect_ratio
]
start_button.click(
fn=process,
inputs=ips,
outputs=[
result_video, preview_image,
progress_desc, progress_bar,
start_button, stop_button
]
)
stop_button.click(fn=end_process)
example_quick_prompts.click(
fn=lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
# Show/hide aspect ratio dropdown based on t2v checkbox
def show_aspect_ratio(t2v_checked):
return gr.update(visible=bool(t2v_checked))
t2v.change(
fn=show_aspect_ratio,
inputs=[t2v],
outputs=[aspect_ratio],
queue=False
)
block.launch(share=True)