Spaces:
Running
on
Zero
Running
on
Zero
Upload 24 files
Browse files- .gitattributes +5 -35
- .gitignore +182 -0
- Dockerfile +42 -0
- LICENSE +201 -0
- README-HF.md +31 -0
- README.md +11 -12
- app.py +724 -0
- demo_gradio.py +404 -0
- diffusers_helper/__init__.py +1 -0
- diffusers_helper/bucket_tools.py +30 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/gradio/progress_bar.py +86 -0
- diffusers_helper/hf_login.py +25 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/k_diffusion/uni_pc_fm.py +155 -0
- diffusers_helper/k_diffusion/wrapper.py +51 -0
- diffusers_helper/memory.py +210 -0
- diffusers_helper/models/hunyuan_video_packed.py +1032 -0
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +120 -0
- diffusers_helper/thread_utils.py +123 -0
- diffusers_helper/utils.py +613 -0
- requirements.txt +18 -0
- setup.sh +7 -0
.gitattributes
CHANGED
@@ -1,35 +1,5 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
-
*.
|
4 |
-
*.
|
5 |
-
*.
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Project specific
|
24 |
+
outputs/
|
25 |
+
hf_download/
|
26 |
+
*.mp4
|
27 |
+
*.safetensors
|
28 |
+
*.bin
|
29 |
+
*.pt
|
30 |
+
*.pth
|
31 |
+
|
32 |
+
# Environment
|
33 |
+
.env
|
34 |
+
.venv
|
35 |
+
env/
|
36 |
+
venv/
|
37 |
+
ENV/
|
38 |
+
env.bak/
|
39 |
+
venv.bak/
|
40 |
+
.DS_Store
|
41 |
+
|
42 |
+
# IDE settings
|
43 |
+
.vscode/
|
44 |
+
.idea/
|
45 |
+
*.swp
|
46 |
+
*.swo
|
47 |
+
|
48 |
+
# Byte-compiled / optimized / DLL files
|
49 |
+
*.manifest
|
50 |
+
*.spec
|
51 |
+
|
52 |
+
# Installer logs
|
53 |
+
pip-log.txt
|
54 |
+
pip-delete-this-directory.txt
|
55 |
+
|
56 |
+
# Unit test / coverage reports
|
57 |
+
htmlcov/
|
58 |
+
.tox/
|
59 |
+
.nox/
|
60 |
+
.coverage
|
61 |
+
.coverage.*
|
62 |
+
.cache
|
63 |
+
nosetests.xml
|
64 |
+
coverage.xml
|
65 |
+
*.cover
|
66 |
+
*.py,cover
|
67 |
+
.hypothesis/
|
68 |
+
.pytest_cache/
|
69 |
+
cover/
|
70 |
+
|
71 |
+
# Translations
|
72 |
+
*.mo
|
73 |
+
*.pot
|
74 |
+
|
75 |
+
# Django stuff:
|
76 |
+
*.log
|
77 |
+
local_settings.py
|
78 |
+
db.sqlite3
|
79 |
+
db.sqlite3-journal
|
80 |
+
|
81 |
+
# Flask stuff:
|
82 |
+
instance/
|
83 |
+
.webassets-cache
|
84 |
+
|
85 |
+
# Scrapy stuff:
|
86 |
+
.scrapy
|
87 |
+
|
88 |
+
# Sphinx documentation
|
89 |
+
docs/_build/
|
90 |
+
|
91 |
+
# PyBuilder
|
92 |
+
.pybuilder/
|
93 |
+
target/
|
94 |
+
|
95 |
+
# Jupyter Notebook
|
96 |
+
.ipynb_checkpoints
|
97 |
+
|
98 |
+
# IPython
|
99 |
+
profile_default/
|
100 |
+
ipython_config.py
|
101 |
+
|
102 |
+
# pyenv
|
103 |
+
# For a library or package, you might want to ignore these files since the code is
|
104 |
+
# intended to run in multiple environments; otherwise, check them in:
|
105 |
+
# .python-version
|
106 |
+
|
107 |
+
# pipenv
|
108 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
109 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
110 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
111 |
+
# install all needed dependencies.
|
112 |
+
#Pipfile.lock
|
113 |
+
|
114 |
+
# UV
|
115 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
116 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
117 |
+
# commonly ignored for libraries.
|
118 |
+
#uv.lock
|
119 |
+
|
120 |
+
# poetry
|
121 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
122 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
123 |
+
# commonly ignored for libraries.
|
124 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
125 |
+
#poetry.lock
|
126 |
+
|
127 |
+
# pdm
|
128 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
129 |
+
#pdm.lock
|
130 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
131 |
+
# in version control.
|
132 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
133 |
+
.pdm.toml
|
134 |
+
.pdm-python
|
135 |
+
.pdm-build/
|
136 |
+
|
137 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
138 |
+
__pypackages__/
|
139 |
+
|
140 |
+
# Celery stuff
|
141 |
+
celerybeat-schedule
|
142 |
+
celerybeat.pid
|
143 |
+
|
144 |
+
# SageMath parsed files
|
145 |
+
*.sage.py
|
146 |
+
|
147 |
+
# Spyder project settings
|
148 |
+
.spyderproject
|
149 |
+
.spyproject
|
150 |
+
|
151 |
+
# Rope project settings
|
152 |
+
.ropeproject
|
153 |
+
|
154 |
+
# mkdocs documentation
|
155 |
+
/site
|
156 |
+
|
157 |
+
# mypy
|
158 |
+
.mypy_cache/
|
159 |
+
.dmypy.json
|
160 |
+
dmypy.json
|
161 |
+
|
162 |
+
# Pyre type checker
|
163 |
+
.pyre/
|
164 |
+
|
165 |
+
# pytype static type analyzer
|
166 |
+
.pytype/
|
167 |
+
|
168 |
+
# Cython debug symbols
|
169 |
+
cython_debug/
|
170 |
+
|
171 |
+
# PyCharm
|
172 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
173 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
174 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
175 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
176 |
+
.idea/
|
177 |
+
|
178 |
+
# Ruff stuff:
|
179 |
+
.ruff_cache/
|
180 |
+
|
181 |
+
# PyPI configuration file
|
182 |
+
.pypirc
|
Dockerfile
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04
|
2 |
+
|
3 |
+
# Set non-interactive installation and avoid unnecessary packages
|
4 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
5 |
+
ENV TZ=Asia/Shanghai
|
6 |
+
|
7 |
+
# Install basic tools and Python
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
git \
|
10 |
+
python3 \
|
11 |
+
python3-pip \
|
12 |
+
ffmpeg \
|
13 |
+
libgl1-mesa-glx \
|
14 |
+
libglib2.0-0 \
|
15 |
+
&& apt-get clean \
|
16 |
+
&& rm -rf /var/lib/apt/lists/*
|
17 |
+
|
18 |
+
# Set working directory
|
19 |
+
WORKDIR /app
|
20 |
+
|
21 |
+
# Copy required files
|
22 |
+
COPY requirements.txt ./
|
23 |
+
COPY app.py ./
|
24 |
+
COPY setup.sh ./
|
25 |
+
COPY README.md ./
|
26 |
+
COPY diffusers_helper ./diffusers_helper
|
27 |
+
|
28 |
+
# Install Python dependencies
|
29 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
30 |
+
|
31 |
+
# Create required directories
|
32 |
+
RUN mkdir -p /app/outputs
|
33 |
+
RUN mkdir -p /app/hf_download
|
34 |
+
|
35 |
+
# Set permissions
|
36 |
+
RUN chmod +x setup.sh
|
37 |
+
|
38 |
+
# Set environment variable
|
39 |
+
ENV HF_HOME=/app/hf_download
|
40 |
+
|
41 |
+
# Run application
|
42 |
+
CMD ["python3", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README-HF.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FramePack - Image-to-Video Generation
|
2 |
+
An AI application that converts static images into dynamic videos. Upload a character image, add a motion description, and generate smooth videos!
|
3 |
+
|
4 |
+
## How to Use
|
5 |
+
|
6 |
+
1. Upload a character image
|
7 |
+
2. Enter a prompt describing the desired motion (e.g., "The girl dances gracefully")
|
8 |
+
3. Adjust video length and other optional parameters
|
9 |
+
4. Click the "Start Generation" button
|
10 |
+
5. Wait for the video to generate (the process is progressive, continuously extending the video length)
|
11 |
+
|
12 |
+
## Example Prompts
|
13 |
+
|
14 |
+
- "The girl dances gracefully, with clear movements, full of charm."
|
15 |
+
- "The man dances energetically, leaping mid-air with fluid arm swings and quick footwork."
|
16 |
+
- "A character doing some simple body movements."
|
17 |
+
|
18 |
+
## Technical Features
|
19 |
+
|
20 |
+
- Based on Hunyuan Video and FramePack architecture
|
21 |
+
- Supports low-memory GPU operation
|
22 |
+
- Can generate videos up to 120 seconds long
|
23 |
+
- Uses TeaCache technology to accelerate the generation process
|
24 |
+
|
25 |
+
## Notes
|
26 |
+
|
27 |
+
- Video generation is done in reverse order, with the ending motion generated before the starting motion
|
28 |
+
- The first use requires downloading the model (approximately 30GB), please be patient
|
29 |
+
- If you encounter an out-of-memory error, increase the value of "GPU inference reserved memory"
|
30 |
+
---
|
31 |
+
Original Project: [FramePack GitHub](https://github.com/lllyasviel/FramePack)
|
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.29.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Framepack Uncensored
|
3 |
+
emoji: 🎬
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.29.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: The best Uncensored Video Gen
|
11 |
+
---
|
|
app.py
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ['HF_HOME'] = os.path.abspath(
|
4 |
+
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
5 |
+
)
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
+
import math
|
14 |
+
import spaces
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
+
from transformers import (
|
19 |
+
LlamaModel, CLIPTextModel,
|
20 |
+
LlamaTokenizerFast, CLIPTokenizer
|
21 |
+
)
|
22 |
+
from diffusers_helper.hunyuan import (
|
23 |
+
encode_prompt_conds, vae_decode,
|
24 |
+
vae_encode, vae_decode_fake
|
25 |
+
)
|
26 |
+
from diffusers_helper.utils import (
|
27 |
+
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
28 |
+
soft_append_bcthw, resize_and_center_crop,
|
29 |
+
state_dict_weighted_merge, state_dict_offset_merge,
|
30 |
+
generate_timestamp
|
31 |
+
)
|
32 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
33 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
34 |
+
from diffusers_helper.memory import (
|
35 |
+
cpu, gpu,
|
36 |
+
get_cuda_free_memory_gb,
|
37 |
+
move_model_to_device_with_memory_preservation,
|
38 |
+
offload_model_from_device_for_memory_preservation,
|
39 |
+
fake_diffusers_current_device,
|
40 |
+
DynamicSwapInstaller,
|
41 |
+
unload_complete_models,
|
42 |
+
load_model_as_complete
|
43 |
+
)
|
44 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
45 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
46 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
47 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
48 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
49 |
+
|
50 |
+
# Check GPU memory
|
51 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
52 |
+
high_vram = free_mem_gb > 60
|
53 |
+
|
54 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
55 |
+
print(f'High-VRAM Mode: {high_vram}')
|
56 |
+
|
57 |
+
# Load models
|
58 |
+
text_encoder = LlamaModel.from_pretrained(
|
59 |
+
"hunyuanvideo-community/HunyuanVideo",
|
60 |
+
subfolder='text_encoder',
|
61 |
+
torch_dtype=torch.float16
|
62 |
+
).cpu()
|
63 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
64 |
+
"hunyuanvideo-community/HunyuanVideo",
|
65 |
+
subfolder='text_encoder_2',
|
66 |
+
torch_dtype=torch.float16
|
67 |
+
).cpu()
|
68 |
+
tokenizer = LlamaTokenizerFast.from_pretrained(
|
69 |
+
"hunyuanvideo-community/HunyuanVideo",
|
70 |
+
subfolder='tokenizer'
|
71 |
+
)
|
72 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
73 |
+
"hunyuanvideo-community/HunyuanVideo",
|
74 |
+
subfolder='tokenizer_2'
|
75 |
+
)
|
76 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
77 |
+
"hunyuanvideo-community/HunyuanVideo",
|
78 |
+
subfolder='vae',
|
79 |
+
torch_dtype=torch.float16
|
80 |
+
).cpu()
|
81 |
+
|
82 |
+
feature_extractor = SiglipImageProcessor.from_pretrained(
|
83 |
+
"lllyasviel/flux_redux_bfl",
|
84 |
+
subfolder='feature_extractor'
|
85 |
+
)
|
86 |
+
image_encoder = SiglipVisionModel.from_pretrained(
|
87 |
+
"lllyasviel/flux_redux_bfl",
|
88 |
+
subfolder='image_encoder',
|
89 |
+
torch_dtype=torch.float16
|
90 |
+
).cpu()
|
91 |
+
|
92 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
93 |
+
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
94 |
+
torch_dtype=torch.bfloat16
|
95 |
+
).cpu()
|
96 |
+
|
97 |
+
# Evaluation mode
|
98 |
+
vae.eval()
|
99 |
+
text_encoder.eval()
|
100 |
+
text_encoder_2.eval()
|
101 |
+
image_encoder.eval()
|
102 |
+
transformer.eval()
|
103 |
+
|
104 |
+
# Slicing/Tiling for low VRAM
|
105 |
+
if not high_vram:
|
106 |
+
vae.enable_slicing()
|
107 |
+
vae.enable_tiling()
|
108 |
+
|
109 |
+
transformer.high_quality_fp32_output_for_inference = True
|
110 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
111 |
+
|
112 |
+
# Move to correct dtype
|
113 |
+
transformer.to(dtype=torch.bfloat16)
|
114 |
+
vae.to(dtype=torch.float16)
|
115 |
+
image_encoder.to(dtype=torch.float16)
|
116 |
+
text_encoder.to(dtype=torch.float16)
|
117 |
+
text_encoder_2.to(dtype=torch.float16)
|
118 |
+
|
119 |
+
# No gradient
|
120 |
+
vae.requires_grad_(False)
|
121 |
+
text_encoder.requires_grad_(False)
|
122 |
+
text_encoder_2.requires_grad_(False)
|
123 |
+
image_encoder.requires_grad_(False)
|
124 |
+
transformer.requires_grad_(False)
|
125 |
+
|
126 |
+
# DynamicSwap if low VRAM
|
127 |
+
if not high_vram:
|
128 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
129 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
130 |
+
else:
|
131 |
+
text_encoder.to(gpu)
|
132 |
+
text_encoder_2.to(gpu)
|
133 |
+
image_encoder.to(gpu)
|
134 |
+
vae.to(gpu)
|
135 |
+
transformer.to(gpu)
|
136 |
+
|
137 |
+
stream = AsyncStream()
|
138 |
+
|
139 |
+
outputs_folder = './outputs/'
|
140 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
141 |
+
|
142 |
+
examples = [
|
143 |
+
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
|
144 |
+
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
145 |
+
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
146 |
+
]
|
147 |
+
|
148 |
+
# Example generation (optional)
|
149 |
+
def generate_examples(input_image, prompt):
|
150 |
+
t2v=False
|
151 |
+
n_prompt=""
|
152 |
+
seed=31337
|
153 |
+
total_second_length=60
|
154 |
+
latent_window_size=9
|
155 |
+
steps=25
|
156 |
+
cfg=1.0
|
157 |
+
gs=10.0
|
158 |
+
rs=0.0
|
159 |
+
gpu_memory_preservation=6
|
160 |
+
use_teacache=True
|
161 |
+
mp4_crf=16
|
162 |
+
|
163 |
+
global stream
|
164 |
+
|
165 |
+
if t2v:
|
166 |
+
default_height, default_width = 640, 640
|
167 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
168 |
+
print("No input image provided. Using a blank white image.")
|
169 |
+
|
170 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
171 |
+
|
172 |
+
stream = AsyncStream()
|
173 |
+
|
174 |
+
async_run(
|
175 |
+
worker, input_image, prompt, n_prompt, seed,
|
176 |
+
total_second_length, latent_window_size, steps,
|
177 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
178 |
+
)
|
179 |
+
|
180 |
+
output_filename = None
|
181 |
+
|
182 |
+
while True:
|
183 |
+
flag, data = stream.output_queue.next()
|
184 |
+
|
185 |
+
if flag == 'file':
|
186 |
+
output_filename = data
|
187 |
+
yield (
|
188 |
+
output_filename,
|
189 |
+
gr.update(),
|
190 |
+
gr.update(),
|
191 |
+
gr.update(),
|
192 |
+
gr.update(interactive=False),
|
193 |
+
gr.update(interactive=True)
|
194 |
+
)
|
195 |
+
|
196 |
+
if flag == 'progress':
|
197 |
+
preview, desc, html = data
|
198 |
+
yield (
|
199 |
+
gr.update(),
|
200 |
+
gr.update(visible=True, value=preview),
|
201 |
+
desc,
|
202 |
+
html,
|
203 |
+
gr.update(interactive=False),
|
204 |
+
gr.update(interactive=True)
|
205 |
+
)
|
206 |
+
|
207 |
+
if flag == 'end':
|
208 |
+
yield (
|
209 |
+
output_filename,
|
210 |
+
gr.update(visible=False),
|
211 |
+
gr.update(),
|
212 |
+
'',
|
213 |
+
gr.update(interactive=True),
|
214 |
+
gr.update(interactive=False)
|
215 |
+
)
|
216 |
+
break
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def worker(
|
220 |
+
input_image, prompt, n_prompt, seed,
|
221 |
+
total_second_length, latent_window_size, steps,
|
222 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
223 |
+
):
|
224 |
+
# Calculate total sections
|
225 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
226 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
227 |
+
|
228 |
+
job_id = generate_timestamp()
|
229 |
+
|
230 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
231 |
+
|
232 |
+
try:
|
233 |
+
# Unload if VRAM is low
|
234 |
+
if not high_vram:
|
235 |
+
unload_complete_models(
|
236 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
237 |
+
)
|
238 |
+
|
239 |
+
# Text encoding
|
240 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
241 |
+
|
242 |
+
if not high_vram:
|
243 |
+
fake_diffusers_current_device(text_encoder, gpu)
|
244 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
245 |
+
|
246 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
247 |
+
|
248 |
+
if cfg == 1:
|
249 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
250 |
+
else:
|
251 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
252 |
+
|
253 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
254 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
255 |
+
|
256 |
+
# Process image
|
257 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
258 |
+
|
259 |
+
H, W, C = input_image.shape
|
260 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
261 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
262 |
+
|
263 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
264 |
+
|
265 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
266 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
267 |
+
|
268 |
+
# VAE encoding
|
269 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
270 |
+
|
271 |
+
if not high_vram:
|
272 |
+
load_model_as_complete(vae, target_device=gpu)
|
273 |
+
start_latent = vae_encode(input_image_pt, vae)
|
274 |
+
|
275 |
+
# CLIP Vision
|
276 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
277 |
+
|
278 |
+
if not high_vram:
|
279 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
280 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
281 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
282 |
+
|
283 |
+
# Convert dtype
|
284 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
285 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
286 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
287 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
288 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
289 |
+
|
290 |
+
# Start sampling
|
291 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
292 |
+
|
293 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
294 |
+
|
295 |
+
history_latents = torch.zeros(
|
296 |
+
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
|
297 |
+
dtype=torch.float32
|
298 |
+
).cpu()
|
299 |
+
history_pixels = None
|
300 |
+
|
301 |
+
# Add start_latent
|
302 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
303 |
+
total_generated_latent_frames = 1
|
304 |
+
|
305 |
+
for section_index in range(total_latent_sections):
|
306 |
+
if stream.input_queue.top() == 'end':
|
307 |
+
stream.output_queue.push(('end', None))
|
308 |
+
return
|
309 |
+
|
310 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
311 |
+
|
312 |
+
if not high_vram:
|
313 |
+
unload_complete_models()
|
314 |
+
move_model_to_device_with_memory_preservation(
|
315 |
+
transformer, target_device=gpu,
|
316 |
+
preserved_memory_gb=gpu_memory_preservation
|
317 |
+
)
|
318 |
+
|
319 |
+
if use_teacache:
|
320 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
321 |
+
else:
|
322 |
+
transformer.initialize_teacache(enable_teacache=False)
|
323 |
+
|
324 |
+
def callback(d):
|
325 |
+
preview = d['denoised']
|
326 |
+
preview = vae_decode_fake(preview)
|
327 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
328 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
329 |
+
|
330 |
+
if stream.input_queue.top() == 'end':
|
331 |
+
stream.output_queue.push(('end', None))
|
332 |
+
raise KeyboardInterrupt('User ends the task.')
|
333 |
+
|
334 |
+
current_step = d['i'] + 1
|
335 |
+
percentage = int(100.0 * current_step / steps)
|
336 |
+
hint = f'Sampling {current_step}/{steps}'
|
337 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
|
338 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
339 |
+
return
|
340 |
+
|
341 |
+
indices = torch.arange(
|
342 |
+
0, sum([1, 16, 2, 1, latent_window_size])
|
343 |
+
).unsqueeze(0)
|
344 |
+
(
|
345 |
+
clean_latent_indices_start,
|
346 |
+
clean_latent_4x_indices,
|
347 |
+
clean_latent_2x_indices,
|
348 |
+
clean_latent_1x_indices,
|
349 |
+
latent_indices
|
350 |
+
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
351 |
+
|
352 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
353 |
+
|
354 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
355 |
+
:, :, -sum([16, 2, 1]):, :, :
|
356 |
+
].split([16, 2, 1], dim=2)
|
357 |
+
|
358 |
+
clean_latents = torch.cat(
|
359 |
+
[start_latent.to(history_latents), clean_latents_1x],
|
360 |
+
dim=2
|
361 |
+
)
|
362 |
+
|
363 |
+
generated_latents = sample_hunyuan(
|
364 |
+
transformer=transformer,
|
365 |
+
sampler='unipc',
|
366 |
+
width=width,
|
367 |
+
height=height,
|
368 |
+
frames=latent_window_size * 4 - 3,
|
369 |
+
real_guidance_scale=cfg,
|
370 |
+
distilled_guidance_scale=gs,
|
371 |
+
guidance_rescale=rs,
|
372 |
+
num_inference_steps=steps,
|
373 |
+
generator=rnd,
|
374 |
+
prompt_embeds=llama_vec,
|
375 |
+
prompt_embeds_mask=llama_attention_mask,
|
376 |
+
prompt_poolers=clip_l_pooler,
|
377 |
+
negative_prompt_embeds=llama_vec_n,
|
378 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
379 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
380 |
+
device=gpu,
|
381 |
+
dtype=torch.bfloat16,
|
382 |
+
image_embeddings=image_encoder_last_hidden_state,
|
383 |
+
latent_indices=latent_indices,
|
384 |
+
clean_latents=clean_latents,
|
385 |
+
clean_latent_indices=clean_latent_indices,
|
386 |
+
clean_latents_2x=clean_latents_2x,
|
387 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
388 |
+
clean_latents_4x=clean_latents_4x,
|
389 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
390 |
+
callback=callback,
|
391 |
+
)
|
392 |
+
|
393 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
394 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
395 |
+
|
396 |
+
if not high_vram:
|
397 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
398 |
+
load_model_as_complete(vae, target_device=gpu)
|
399 |
+
|
400 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
401 |
+
|
402 |
+
if history_pixels is None:
|
403 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
404 |
+
else:
|
405 |
+
section_latent_frames = latent_window_size * 2
|
406 |
+
overlapped_frames = latent_window_size * 4 - 3
|
407 |
+
|
408 |
+
current_pixels = vae_decode(
|
409 |
+
real_history_latents[:, :, -section_latent_frames:], vae
|
410 |
+
).cpu()
|
411 |
+
history_pixels = soft_append_bcthw(
|
412 |
+
history_pixels, current_pixels, overlapped_frames
|
413 |
+
)
|
414 |
+
|
415 |
+
if not high_vram:
|
416 |
+
unload_complete_models()
|
417 |
+
|
418 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
419 |
+
|
420 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
421 |
+
|
422 |
+
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
423 |
+
|
424 |
+
stream.output_queue.push(('file', output_filename))
|
425 |
+
|
426 |
+
except:
|
427 |
+
traceback.print_exc()
|
428 |
+
if not high_vram:
|
429 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
430 |
+
|
431 |
+
stream.output_queue.push(('end', None))
|
432 |
+
return
|
433 |
+
|
434 |
+
def get_duration(
|
435 |
+
input_image, prompt, t2v, n_prompt,
|
436 |
+
seed, total_second_length, latent_window_size,
|
437 |
+
steps, cfg, gs, rs, gpu_memory_preservation,
|
438 |
+
use_teacache, mp4_crf
|
439 |
+
):
|
440 |
+
return total_second_length * 60
|
441 |
+
|
442 |
+
@spaces.GPU(duration=get_duration)
|
443 |
+
def process(
|
444 |
+
input_image, prompt, t2v=False, n_prompt="", seed=31337,
|
445 |
+
total_second_length=60, latent_window_size=9, steps=25,
|
446 |
+
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
|
447 |
+
use_teacache=True, mp4_crf=16
|
448 |
+
):
|
449 |
+
global stream
|
450 |
+
if t2v:
|
451 |
+
default_height, default_width = 640, 640
|
452 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
453 |
+
print("No input image provided. Using a blank white image.")
|
454 |
+
else:
|
455 |
+
composite_rgba_uint8 = input_image["composite"]
|
456 |
+
|
457 |
+
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
458 |
+
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
459 |
+
|
460 |
+
h, w = rgb_uint8.shape[:2]
|
461 |
+
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
462 |
+
|
463 |
+
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
464 |
+
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
465 |
+
|
466 |
+
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
467 |
+
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
468 |
+
|
469 |
+
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
470 |
+
|
471 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
472 |
+
|
473 |
+
stream = AsyncStream()
|
474 |
+
|
475 |
+
async_run(
|
476 |
+
worker, input_image, prompt, n_prompt, seed,
|
477 |
+
total_second_length, latent_window_size, steps,
|
478 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
479 |
+
)
|
480 |
+
|
481 |
+
output_filename = None
|
482 |
+
|
483 |
+
while True:
|
484 |
+
flag, data = stream.output_queue.next()
|
485 |
+
|
486 |
+
if flag == 'file':
|
487 |
+
output_filename = data
|
488 |
+
yield (
|
489 |
+
output_filename,
|
490 |
+
gr.update(),
|
491 |
+
gr.update(),
|
492 |
+
gr.update(),
|
493 |
+
gr.update(interactive=False),
|
494 |
+
gr.update(interactive=True)
|
495 |
+
)
|
496 |
+
|
497 |
+
elif flag == 'progress':
|
498 |
+
preview, desc, html = data
|
499 |
+
yield (
|
500 |
+
gr.update(),
|
501 |
+
gr.update(visible=True, value=preview),
|
502 |
+
desc,
|
503 |
+
html,
|
504 |
+
gr.update(interactive=False),
|
505 |
+
gr.update(interactive=True)
|
506 |
+
)
|
507 |
+
|
508 |
+
elif flag == 'end':
|
509 |
+
yield (
|
510 |
+
output_filename,
|
511 |
+
gr.update(visible=False),
|
512 |
+
gr.update(),
|
513 |
+
'',
|
514 |
+
gr.update(interactive=True),
|
515 |
+
gr.update(interactive=False)
|
516 |
+
)
|
517 |
+
break
|
518 |
+
|
519 |
+
def end_process():
|
520 |
+
stream.input_queue.push('end')
|
521 |
+
|
522 |
+
|
523 |
+
quick_prompts = [
|
524 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
525 |
+
'A character doing some simple body movements.'
|
526 |
+
]
|
527 |
+
quick_prompts = [[x] for x in quick_prompts]
|
528 |
+
|
529 |
+
|
530 |
+
def make_custom_css():
|
531 |
+
base_progress_css = make_progress_bar_css()
|
532 |
+
extra_css = """
|
533 |
+
body {
|
534 |
+
background: #fafbfe !important;
|
535 |
+
font-family: "Noto Sans", sans-serif;
|
536 |
+
}
|
537 |
+
#title-container {
|
538 |
+
text-align: center;
|
539 |
+
padding: 20px 0;
|
540 |
+
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
541 |
+
border-radius: 0 0 10px 10px;
|
542 |
+
margin-bottom: 20px;
|
543 |
+
}
|
544 |
+
#title-container h1 {
|
545 |
+
color: white;
|
546 |
+
font-size: 2rem;
|
547 |
+
margin: 0;
|
548 |
+
font-weight: 800;
|
549 |
+
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
550 |
+
}
|
551 |
+
.gr-panel {
|
552 |
+
background: #ffffffcc;
|
553 |
+
backdrop-filter: blur(4px);
|
554 |
+
border: 1px solid #dcdcf7;
|
555 |
+
border-radius: 12px;
|
556 |
+
padding: 16px;
|
557 |
+
margin-bottom: 8px;
|
558 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
559 |
+
}
|
560 |
+
.gr-box > label {
|
561 |
+
font-size: 0.9rem;
|
562 |
+
font-weight: 600;
|
563 |
+
color: #333;
|
564 |
+
}
|
565 |
+
.button-container button {
|
566 |
+
min-height: 48px;
|
567 |
+
font-size: 1rem;
|
568 |
+
font-weight: 600;
|
569 |
+
border-radius: 8px;
|
570 |
+
border: none !important;
|
571 |
+
}
|
572 |
+
.button-container button#start-button {
|
573 |
+
background-color: #4b9ffa !important;
|
574 |
+
color: #fff;
|
575 |
+
}
|
576 |
+
.button-container button#stop-button {
|
577 |
+
background-color: #ef5d84 !important;
|
578 |
+
color: #fff;
|
579 |
+
}
|
580 |
+
.button-container button:hover {
|
581 |
+
filter: brightness(0.97);
|
582 |
+
}
|
583 |
+
.no-generating-animation {
|
584 |
+
margin-top: 10px;
|
585 |
+
margin-bottom: 10px;
|
586 |
+
}
|
587 |
+
"""
|
588 |
+
return base_progress_css + extra_css
|
589 |
+
|
590 |
+
css = make_custom_css()
|
591 |
+
|
592 |
+
block = gr.Blocks(css=css).queue()
|
593 |
+
with block:
|
594 |
+
# Title (use gr.Group instead of gr.Box for older Gradio versions)
|
595 |
+
with gr.Group(elem_id="title-container"):
|
596 |
+
gr.Markdown("<h1>FramePack I2V</h1>")
|
597 |
+
|
598 |
+
gr.Markdown("""
|
599 |
+
### Video diffusion, but feels like image diffusion
|
600 |
+
FramePack I2V - a model that predicts future frames from past frames,
|
601 |
+
letting you generate short animations from a single image plus text prompt.
|
602 |
+
""")
|
603 |
+
|
604 |
+
with gr.Row():
|
605 |
+
with gr.Column():
|
606 |
+
input_image = gr.ImageEditor(
|
607 |
+
type="numpy",
|
608 |
+
label="Image Editor (use Brush for mask)",
|
609 |
+
height=320,
|
610 |
+
brush=gr.Brush(colors=["#ffffff"])
|
611 |
+
)
|
612 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
613 |
+
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)
|
614 |
+
|
615 |
+
example_quick_prompts = gr.Dataset(
|
616 |
+
samples=quick_prompts,
|
617 |
+
label="Quick Prompts",
|
618 |
+
samples_per_page=1000,
|
619 |
+
components=[prompt]
|
620 |
+
)
|
621 |
+
example_quick_prompts.click(
|
622 |
+
fn=lambda x: x[0],
|
623 |
+
inputs=[example_quick_prompts],
|
624 |
+
outputs=prompt,
|
625 |
+
show_progress=False,
|
626 |
+
queue=False
|
627 |
+
)
|
628 |
+
|
629 |
+
with gr.Row(elem_classes="button-container"):
|
630 |
+
start_button = gr.Button(value="Start Generation", elem_id="start-button")
|
631 |
+
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
632 |
+
|
633 |
+
total_second_length = gr.Slider(
|
634 |
+
label="Total Video Length (Seconds)",
|
635 |
+
minimum=1,
|
636 |
+
maximum=60,
|
637 |
+
value=2,
|
638 |
+
step=0.1
|
639 |
+
)
|
640 |
+
|
641 |
+
with gr.Group():
|
642 |
+
with gr.Accordion("Advanced Settings", open=False):
|
643 |
+
use_teacache = gr.Checkbox(
|
644 |
+
label='Use TeaCache',
|
645 |
+
value=True,
|
646 |
+
info='Faster speed, but may worsen hands/fingers.'
|
647 |
+
)
|
648 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
649 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
650 |
+
latent_window_size = gr.Slider(
|
651 |
+
label="Latent Window Size",
|
652 |
+
minimum=1, maximum=33,
|
653 |
+
value=9, step=1,
|
654 |
+
visible=False
|
655 |
+
)
|
656 |
+
steps = gr.Slider(
|
657 |
+
label="Steps",
|
658 |
+
minimum=1, maximum=100,
|
659 |
+
value=25, step=1,
|
660 |
+
info='Not recommended to change drastically.'
|
661 |
+
)
|
662 |
+
cfg = gr.Slider(
|
663 |
+
label="CFG Scale",
|
664 |
+
minimum=1.0, maximum=32.0,
|
665 |
+
value=1.0, step=0.01,
|
666 |
+
visible=False
|
667 |
+
)
|
668 |
+
gs = gr.Slider(
|
669 |
+
label="Distilled CFG Scale",
|
670 |
+
minimum=1.0, maximum=32.0,
|
671 |
+
value=10.0, step=0.01,
|
672 |
+
info='Not recommended to change drastically.'
|
673 |
+
)
|
674 |
+
rs = gr.Slider(
|
675 |
+
label="CFG Re-Scale",
|
676 |
+
minimum=0.0, maximum=1.0,
|
677 |
+
value=0.0, step=0.01,
|
678 |
+
visible=False
|
679 |
+
)
|
680 |
+
gpu_memory_preservation = gr.Slider(
|
681 |
+
label="GPU Memory Preservation (GB)",
|
682 |
+
minimum=6, maximum=128,
|
683 |
+
value=6, step=0.1,
|
684 |
+
info="Increase if OOM occurs, but slower."
|
685 |
+
)
|
686 |
+
mp4_crf = gr.Slider(
|
687 |
+
label="MP4 Compression (CRF)",
|
688 |
+
minimum=0, maximum=100,
|
689 |
+
value=16, step=1,
|
690 |
+
info="Lower = better quality. 16 recommended."
|
691 |
+
)
|
692 |
+
|
693 |
+
with gr.Column():
|
694 |
+
preview_image = gr.Image(
|
695 |
+
label="Preview Latents",
|
696 |
+
height=200,
|
697 |
+
visible=False
|
698 |
+
)
|
699 |
+
result_video = gr.Video(
|
700 |
+
label="Finished Frames",
|
701 |
+
autoplay=True,
|
702 |
+
show_share_button=False,
|
703 |
+
height=512,
|
704 |
+
loop=True
|
705 |
+
)
|
706 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
707 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
708 |
+
|
709 |
+
|
710 |
+
ips = [
|
711 |
+
input_image, prompt, t2v, n_prompt, seed,
|
712 |
+
total_second_length, latent_window_size,
|
713 |
+
steps, cfg, gs, rs, gpu_memory_preservation,
|
714 |
+
use_teacache, mp4_crf
|
715 |
+
]
|
716 |
+
start_button.click(
|
717 |
+
fn=process,
|
718 |
+
inputs=ips,
|
719 |
+
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
|
720 |
+
)
|
721 |
+
end_button.click(fn=end_process)
|
722 |
+
|
723 |
+
|
724 |
+
block.launch(share=True)
|
demo_gradio.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
+
import argparse
|
14 |
+
import math
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
19 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
20 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
21 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
22 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
23 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
24 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
25 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
26 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
27 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
28 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
29 |
+
|
30 |
+
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument('--share', action='store_true')
|
33 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
34 |
+
parser.add_argument("--port", type=int, required=False)
|
35 |
+
parser.add_argument("--inbrowser", action='store_true')
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
# for win desktop probably use --server 127.0.0.1 --inbrowser
|
39 |
+
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags
|
40 |
+
|
41 |
+
print(args)
|
42 |
+
|
43 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
44 |
+
high_vram = free_mem_gb > 60
|
45 |
+
|
46 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
47 |
+
print(f'High-VRAM Mode: {high_vram}')
|
48 |
+
|
49 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
50 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
51 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
52 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
53 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
54 |
+
|
55 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
56 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
57 |
+
|
58 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
59 |
+
|
60 |
+
vae.eval()
|
61 |
+
text_encoder.eval()
|
62 |
+
text_encoder_2.eval()
|
63 |
+
image_encoder.eval()
|
64 |
+
transformer.eval()
|
65 |
+
|
66 |
+
if not high_vram:
|
67 |
+
vae.enable_slicing()
|
68 |
+
vae.enable_tiling()
|
69 |
+
|
70 |
+
transformer.high_quality_fp32_output_for_inference = True
|
71 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
72 |
+
|
73 |
+
transformer.to(dtype=torch.bfloat16)
|
74 |
+
vae.to(dtype=torch.float16)
|
75 |
+
image_encoder.to(dtype=torch.float16)
|
76 |
+
text_encoder.to(dtype=torch.float16)
|
77 |
+
text_encoder_2.to(dtype=torch.float16)
|
78 |
+
|
79 |
+
vae.requires_grad_(False)
|
80 |
+
text_encoder.requires_grad_(False)
|
81 |
+
text_encoder_2.requires_grad_(False)
|
82 |
+
image_encoder.requires_grad_(False)
|
83 |
+
transformer.requires_grad_(False)
|
84 |
+
|
85 |
+
if not high_vram:
|
86 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
87 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
88 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
89 |
+
else:
|
90 |
+
text_encoder.to(gpu)
|
91 |
+
text_encoder_2.to(gpu)
|
92 |
+
image_encoder.to(gpu)
|
93 |
+
vae.to(gpu)
|
94 |
+
transformer.to(gpu)
|
95 |
+
|
96 |
+
stream = AsyncStream()
|
97 |
+
|
98 |
+
outputs_folder = './outputs/'
|
99 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
100 |
+
|
101 |
+
|
102 |
+
@torch.no_grad()
|
103 |
+
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
104 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
105 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
106 |
+
|
107 |
+
job_id = generate_timestamp()
|
108 |
+
|
109 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
110 |
+
|
111 |
+
try:
|
112 |
+
# Clean GPU
|
113 |
+
if not high_vram:
|
114 |
+
unload_complete_models(
|
115 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
116 |
+
)
|
117 |
+
|
118 |
+
# Text encoding
|
119 |
+
|
120 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
121 |
+
|
122 |
+
if not high_vram:
|
123 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
124 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
125 |
+
|
126 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
127 |
+
|
128 |
+
if cfg == 1:
|
129 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
130 |
+
else:
|
131 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
132 |
+
|
133 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
134 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
135 |
+
|
136 |
+
# Processing input image
|
137 |
+
|
138 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
139 |
+
|
140 |
+
H, W, C = input_image.shape
|
141 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
142 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
143 |
+
|
144 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
145 |
+
|
146 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
147 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
148 |
+
|
149 |
+
# VAE encoding
|
150 |
+
|
151 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
152 |
+
|
153 |
+
if not high_vram:
|
154 |
+
load_model_as_complete(vae, target_device=gpu)
|
155 |
+
|
156 |
+
start_latent = vae_encode(input_image_pt, vae)
|
157 |
+
|
158 |
+
# CLIP Vision
|
159 |
+
|
160 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
161 |
+
|
162 |
+
if not high_vram:
|
163 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
164 |
+
|
165 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
166 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
167 |
+
|
168 |
+
# Dtype
|
169 |
+
|
170 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
171 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
172 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
173 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
174 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
175 |
+
|
176 |
+
# Sampling
|
177 |
+
|
178 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
179 |
+
|
180 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
181 |
+
num_frames = latent_window_size * 4 - 3
|
182 |
+
|
183 |
+
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
|
184 |
+
history_pixels = None
|
185 |
+
total_generated_latent_frames = 0
|
186 |
+
|
187 |
+
latent_paddings = reversed(range(total_latent_sections))
|
188 |
+
|
189 |
+
if total_latent_sections > 4:
|
190 |
+
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
|
191 |
+
# items looks better than expanding it when total_latent_sections > 4
|
192 |
+
# One can try to remove below trick and just
|
193 |
+
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
194 |
+
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
195 |
+
|
196 |
+
for latent_padding in latent_paddings:
|
197 |
+
is_last_section = latent_padding == 0
|
198 |
+
latent_padding_size = latent_padding * latent_window_size
|
199 |
+
|
200 |
+
if stream.input_queue.top() == 'end':
|
201 |
+
stream.output_queue.push(('end', None))
|
202 |
+
return
|
203 |
+
|
204 |
+
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
|
205 |
+
|
206 |
+
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
|
207 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
208 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
209 |
+
|
210 |
+
clean_latents_pre = start_latent.to(history_latents)
|
211 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
212 |
+
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
213 |
+
|
214 |
+
if not high_vram:
|
215 |
+
unload_complete_models()
|
216 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
217 |
+
|
218 |
+
if use_teacache:
|
219 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
220 |
+
else:
|
221 |
+
transformer.initialize_teacache(enable_teacache=False)
|
222 |
+
|
223 |
+
def callback(d):
|
224 |
+
preview = d['denoised']
|
225 |
+
preview = vae_decode_fake(preview)
|
226 |
+
|
227 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
228 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
229 |
+
|
230 |
+
if stream.input_queue.top() == 'end':
|
231 |
+
stream.output_queue.push(('end', None))
|
232 |
+
raise KeyboardInterrupt('User ends the task.')
|
233 |
+
|
234 |
+
current_step = d['i'] + 1
|
235 |
+
percentage = int(100.0 * current_step / steps)
|
236 |
+
hint = f'Sampling {current_step}/{steps}'
|
237 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
238 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
239 |
+
return
|
240 |
+
|
241 |
+
generated_latents = sample_hunyuan(
|
242 |
+
transformer=transformer,
|
243 |
+
sampler='unipc',
|
244 |
+
width=width,
|
245 |
+
height=height,
|
246 |
+
frames=num_frames,
|
247 |
+
real_guidance_scale=cfg,
|
248 |
+
distilled_guidance_scale=gs,
|
249 |
+
guidance_rescale=rs,
|
250 |
+
# shift=3.0,
|
251 |
+
num_inference_steps=steps,
|
252 |
+
generator=rnd,
|
253 |
+
prompt_embeds=llama_vec,
|
254 |
+
prompt_embeds_mask=llama_attention_mask,
|
255 |
+
prompt_poolers=clip_l_pooler,
|
256 |
+
negative_prompt_embeds=llama_vec_n,
|
257 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
258 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
259 |
+
device=gpu,
|
260 |
+
dtype=torch.bfloat16,
|
261 |
+
image_embeddings=image_encoder_last_hidden_state,
|
262 |
+
latent_indices=latent_indices,
|
263 |
+
clean_latents=clean_latents,
|
264 |
+
clean_latent_indices=clean_latent_indices,
|
265 |
+
clean_latents_2x=clean_latents_2x,
|
266 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
267 |
+
clean_latents_4x=clean_latents_4x,
|
268 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
269 |
+
callback=callback,
|
270 |
+
)
|
271 |
+
|
272 |
+
if is_last_section:
|
273 |
+
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
274 |
+
|
275 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
276 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
277 |
+
|
278 |
+
if not high_vram:
|
279 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
280 |
+
load_model_as_complete(vae, target_device=gpu)
|
281 |
+
|
282 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
283 |
+
|
284 |
+
if history_pixels is None:
|
285 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
286 |
+
else:
|
287 |
+
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
288 |
+
overlapped_frames = latent_window_size * 4 - 3
|
289 |
+
|
290 |
+
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
291 |
+
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
292 |
+
|
293 |
+
if not high_vram:
|
294 |
+
unload_complete_models()
|
295 |
+
|
296 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
297 |
+
|
298 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
299 |
+
|
300 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
301 |
+
|
302 |
+
stream.output_queue.push(('file', output_filename))
|
303 |
+
|
304 |
+
if is_last_section:
|
305 |
+
break
|
306 |
+
except:
|
307 |
+
traceback.print_exc()
|
308 |
+
|
309 |
+
if not high_vram:
|
310 |
+
unload_complete_models(
|
311 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
312 |
+
)
|
313 |
+
|
314 |
+
stream.output_queue.push(('end', None))
|
315 |
+
return
|
316 |
+
|
317 |
+
|
318 |
+
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
319 |
+
global stream
|
320 |
+
assert input_image is not None, 'No input image!'
|
321 |
+
|
322 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
323 |
+
|
324 |
+
stream = AsyncStream()
|
325 |
+
|
326 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
327 |
+
|
328 |
+
output_filename = None
|
329 |
+
|
330 |
+
while True:
|
331 |
+
flag, data = stream.output_queue.next()
|
332 |
+
|
333 |
+
if flag == 'file':
|
334 |
+
output_filename = data
|
335 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
336 |
+
|
337 |
+
if flag == 'progress':
|
338 |
+
preview, desc, html = data
|
339 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
340 |
+
|
341 |
+
if flag == 'end':
|
342 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
343 |
+
break
|
344 |
+
|
345 |
+
|
346 |
+
def end_process():
|
347 |
+
stream.input_queue.push('end')
|
348 |
+
|
349 |
+
|
350 |
+
quick_prompts = [
|
351 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
352 |
+
'A character doing some simple body movements.',
|
353 |
+
]
|
354 |
+
quick_prompts = [[x] for x in quick_prompts]
|
355 |
+
|
356 |
+
|
357 |
+
css = make_progress_bar_css()
|
358 |
+
block = gr.Blocks(css=css).queue()
|
359 |
+
with block:
|
360 |
+
gr.Markdown('# FramePack')
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column():
|
363 |
+
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
364 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
365 |
+
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
366 |
+
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
367 |
+
|
368 |
+
with gr.Row():
|
369 |
+
start_button = gr.Button(value="Start Generation")
|
370 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
371 |
+
|
372 |
+
with gr.Group():
|
373 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
374 |
+
|
375 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
376 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
377 |
+
|
378 |
+
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
379 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
380 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
381 |
+
|
382 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
383 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
384 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
385 |
+
|
386 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
387 |
+
|
388 |
+
with gr.Column():
|
389 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
390 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
391 |
+
gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.')
|
392 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
393 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
394 |
+
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
395 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
396 |
+
end_button.click(fn=end_process)
|
397 |
+
|
398 |
+
|
399 |
+
block.launch(
|
400 |
+
server_name=args.server,
|
401 |
+
server_port=args.port,
|
402 |
+
share=args.share,
|
403 |
+
inbrowser=args.inbrowser,
|
404 |
+
)
|
diffusers_helper/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# diffusers_helper package
|
diffusers_helper/bucket_tools.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bucket_options = {
|
2 |
+
640: [
|
3 |
+
(416, 960),
|
4 |
+
(448, 864),
|
5 |
+
(480, 832),
|
6 |
+
(512, 768),
|
7 |
+
(544, 704),
|
8 |
+
(576, 672),
|
9 |
+
(608, 640),
|
10 |
+
(640, 608),
|
11 |
+
(672, 576),
|
12 |
+
(704, 544),
|
13 |
+
(768, 512),
|
14 |
+
(832, 480),
|
15 |
+
(864, 448),
|
16 |
+
(960, 416),
|
17 |
+
],
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def find_nearest_bucket(h, w, resolution=640):
|
22 |
+
min_metric = float('inf')
|
23 |
+
best_bucket = None
|
24 |
+
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
25 |
+
metric = abs(h * bucket_w - w * bucket_h)
|
26 |
+
if metric <= min_metric:
|
27 |
+
min_metric = metric
|
28 |
+
best_bucket = (bucket_h, bucket_w)
|
29 |
+
return best_bucket
|
30 |
+
|
diffusers_helper/clip_vision.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
5 |
+
assert isinstance(image, np.ndarray)
|
6 |
+
assert image.ndim == 3 and image.shape[2] == 3
|
7 |
+
assert image.dtype == np.uint8
|
8 |
+
|
9 |
+
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
10 |
+
image_encoder_output = image_encoder(**preprocessed)
|
11 |
+
|
12 |
+
return image_encoder_output
|
diffusers_helper/dit_common.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import accelerate.accelerator
|
3 |
+
|
4 |
+
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
5 |
+
|
6 |
+
|
7 |
+
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
8 |
+
|
9 |
+
|
10 |
+
def LayerNorm_forward(self, x):
|
11 |
+
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
12 |
+
|
13 |
+
|
14 |
+
LayerNorm.forward = LayerNorm_forward
|
15 |
+
torch.nn.LayerNorm.forward = LayerNorm_forward
|
16 |
+
|
17 |
+
|
18 |
+
def FP32LayerNorm_forward(self, x):
|
19 |
+
origin_dtype = x.dtype
|
20 |
+
return torch.nn.functional.layer_norm(
|
21 |
+
x.float(),
|
22 |
+
self.normalized_shape,
|
23 |
+
self.weight.float() if self.weight is not None else None,
|
24 |
+
self.bias.float() if self.bias is not None else None,
|
25 |
+
self.eps,
|
26 |
+
).to(origin_dtype)
|
27 |
+
|
28 |
+
|
29 |
+
FP32LayerNorm.forward = FP32LayerNorm_forward
|
30 |
+
|
31 |
+
|
32 |
+
def RMSNorm_forward(self, hidden_states):
|
33 |
+
input_dtype = hidden_states.dtype
|
34 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
35 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
36 |
+
|
37 |
+
if self.weight is None:
|
38 |
+
return hidden_states.to(input_dtype)
|
39 |
+
|
40 |
+
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
41 |
+
|
42 |
+
|
43 |
+
RMSNorm.forward = RMSNorm_forward
|
44 |
+
|
45 |
+
|
46 |
+
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
47 |
+
emb = self.linear(self.silu(conditioning_embedding))
|
48 |
+
scale, shift = emb.chunk(2, dim=1)
|
49 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
diffusers_helper/gradio/progress_bar.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
progress_html = '''
|
2 |
+
<div class="loader-container">
|
3 |
+
<div class="loader"></div>
|
4 |
+
<div class="progress-container">
|
5 |
+
<progress value="*number*" max="100"></progress>
|
6 |
+
</div>
|
7 |
+
<span>*text*</span>
|
8 |
+
</div>
|
9 |
+
'''
|
10 |
+
|
11 |
+
css = '''
|
12 |
+
.loader-container {
|
13 |
+
display: flex; /* Use flex to align items horizontally */
|
14 |
+
align-items: center; /* Center items vertically within the container */
|
15 |
+
white-space: nowrap; /* Prevent line breaks within the container */
|
16 |
+
}
|
17 |
+
|
18 |
+
.loader {
|
19 |
+
border: 8px solid #f3f3f3; /* Light grey */
|
20 |
+
border-top: 8px solid #3498db; /* Blue */
|
21 |
+
border-radius: 50%;
|
22 |
+
width: 30px;
|
23 |
+
height: 30px;
|
24 |
+
animation: spin 2s linear infinite;
|
25 |
+
}
|
26 |
+
|
27 |
+
@keyframes spin {
|
28 |
+
0% { transform: rotate(0deg); }
|
29 |
+
100% { transform: rotate(360deg); }
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Style the progress bar */
|
33 |
+
progress {
|
34 |
+
appearance: none; /* Remove default styling */
|
35 |
+
height: 20px; /* Set the height of the progress bar */
|
36 |
+
border-radius: 5px; /* Round the corners of the progress bar */
|
37 |
+
background-color: #f3f3f3; /* Light grey background */
|
38 |
+
width: 100%;
|
39 |
+
vertical-align: middle !important;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Style the progress bar container */
|
43 |
+
.progress-container {
|
44 |
+
margin-left: 20px;
|
45 |
+
margin-right: 20px;
|
46 |
+
flex-grow: 1; /* Allow the progress container to take up remaining space */
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Set the color of the progress bar fill */
|
50 |
+
progress::-webkit-progress-value {
|
51 |
+
background-color: #3498db; /* Blue color for the fill */
|
52 |
+
}
|
53 |
+
|
54 |
+
progress::-moz-progress-bar {
|
55 |
+
background-color: #3498db; /* Blue color for the fill in Firefox */
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Style the text on the progress bar */
|
59 |
+
progress::after {
|
60 |
+
content: attr(value '%'); /* Display the progress value followed by '%' */
|
61 |
+
position: absolute;
|
62 |
+
top: 50%;
|
63 |
+
left: 50%;
|
64 |
+
transform: translate(-50%, -50%);
|
65 |
+
color: white; /* Set text color */
|
66 |
+
font-size: 14px; /* Set font size */
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Style other texts */
|
70 |
+
.loader-container > span {
|
71 |
+
margin-left: 5px; /* Add spacing between the progress bar and the text */
|
72 |
+
}
|
73 |
+
|
74 |
+
.no-generating-animation > .generating {
|
75 |
+
display: none !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
'''
|
79 |
+
|
80 |
+
|
81 |
+
def make_progress_bar_html(number, text):
|
82 |
+
return progress_html.replace('*number*', str(number)).replace('*text*', text)
|
83 |
+
|
84 |
+
|
85 |
+
def make_progress_bar_css():
|
86 |
+
return css
|
diffusers_helper/hf_login.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import login
|
3 |
+
|
4 |
+
def login():
|
5 |
+
# 如果是在Hugging Face Space环境中运行,使用环境变量中的token
|
6 |
+
if os.environ.get('SPACE_ID') is not None:
|
7 |
+
print("Running in Hugging Face Space, using environment HF_TOKEN")
|
8 |
+
# Space自带访问权限,无需额外登录
|
9 |
+
return
|
10 |
+
|
11 |
+
# 如果本地环境有token,则使用它登录
|
12 |
+
hf_token = os.environ.get('HF_TOKEN')
|
13 |
+
if hf_token:
|
14 |
+
print("Logging in with HF_TOKEN from environment")
|
15 |
+
login(token=hf_token)
|
16 |
+
return
|
17 |
+
|
18 |
+
# 检查缓存的token
|
19 |
+
cache_file = os.path.expanduser('~/.huggingface/token')
|
20 |
+
if os.path.exists(cache_file):
|
21 |
+
print("Found cached Hugging Face token")
|
22 |
+
return
|
23 |
+
|
24 |
+
print("No Hugging Face token found. Using public access.")
|
25 |
+
# 无token时使用公共访问,速度可能较慢且有限制
|
diffusers_helper/hunyuan.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
4 |
+
from diffusers_helper.utils import crop_or_pad_yield_mask
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
9 |
+
assert isinstance(prompt, str)
|
10 |
+
|
11 |
+
prompt = [prompt]
|
12 |
+
|
13 |
+
# LLAMA
|
14 |
+
|
15 |
+
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
16 |
+
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
17 |
+
|
18 |
+
llama_inputs = tokenizer(
|
19 |
+
prompt_llama,
|
20 |
+
padding="max_length",
|
21 |
+
max_length=max_length + crop_start,
|
22 |
+
truncation=True,
|
23 |
+
return_tensors="pt",
|
24 |
+
return_length=False,
|
25 |
+
return_overflowing_tokens=False,
|
26 |
+
return_attention_mask=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
30 |
+
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
31 |
+
llama_attention_length = int(llama_attention_mask.sum())
|
32 |
+
|
33 |
+
llama_outputs = text_encoder(
|
34 |
+
input_ids=llama_input_ids,
|
35 |
+
attention_mask=llama_attention_mask,
|
36 |
+
output_hidden_states=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
40 |
+
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
41 |
+
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
42 |
+
|
43 |
+
assert torch.all(llama_attention_mask.bool())
|
44 |
+
|
45 |
+
# CLIP
|
46 |
+
|
47 |
+
clip_l_input_ids = tokenizer_2(
|
48 |
+
prompt,
|
49 |
+
padding="max_length",
|
50 |
+
max_length=77,
|
51 |
+
truncation=True,
|
52 |
+
return_overflowing_tokens=False,
|
53 |
+
return_length=False,
|
54 |
+
return_tensors="pt",
|
55 |
+
).input_ids
|
56 |
+
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
57 |
+
|
58 |
+
return llama_vec, clip_l_pooler
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def vae_decode_fake(latents):
|
63 |
+
latent_rgb_factors = [
|
64 |
+
[-0.0395, -0.0331, 0.0445],
|
65 |
+
[0.0696, 0.0795, 0.0518],
|
66 |
+
[0.0135, -0.0945, -0.0282],
|
67 |
+
[0.0108, -0.0250, -0.0765],
|
68 |
+
[-0.0209, 0.0032, 0.0224],
|
69 |
+
[-0.0804, -0.0254, -0.0639],
|
70 |
+
[-0.0991, 0.0271, -0.0669],
|
71 |
+
[-0.0646, -0.0422, -0.0400],
|
72 |
+
[-0.0696, -0.0595, -0.0894],
|
73 |
+
[-0.0799, -0.0208, -0.0375],
|
74 |
+
[0.1166, 0.1627, 0.0962],
|
75 |
+
[0.1165, 0.0432, 0.0407],
|
76 |
+
[-0.2315, -0.1920, -0.1355],
|
77 |
+
[-0.0270, 0.0401, -0.0821],
|
78 |
+
[-0.0616, -0.0997, -0.0727],
|
79 |
+
[0.0249, -0.0469, -0.1703]
|
80 |
+
] # From comfyui
|
81 |
+
|
82 |
+
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
83 |
+
|
84 |
+
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
85 |
+
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
86 |
+
|
87 |
+
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
88 |
+
images = images.clamp(0.0, 1.0)
|
89 |
+
|
90 |
+
return images
|
91 |
+
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
def vae_decode(latents, vae, image_mode=False):
|
95 |
+
latents = latents / vae.config.scaling_factor
|
96 |
+
|
97 |
+
if not image_mode:
|
98 |
+
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
99 |
+
else:
|
100 |
+
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
101 |
+
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
102 |
+
image = torch.cat(image, dim=2)
|
103 |
+
|
104 |
+
return image
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def vae_encode(image, vae):
|
109 |
+
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
110 |
+
latents = latents * vae.config.scaling_factor
|
111 |
+
return latents
|
diffusers_helper/k_diffusion/uni_pc_fm.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Better Flow Matching UniPC by Lvmin Zhang
|
2 |
+
# (c) 2025
|
3 |
+
# CC BY-SA 4.0
|
4 |
+
# Attribution-ShareAlike 4.0 International Licence
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from tqdm.auto import trange
|
10 |
+
|
11 |
+
|
12 |
+
def expand_dims(v, dims):
|
13 |
+
return v[(...,) + (None,) * (dims - 1)]
|
14 |
+
|
15 |
+
|
16 |
+
class FlowMatchUniPC:
|
17 |
+
def __init__(self, model, extra_args, variant='bh1'):
|
18 |
+
self.model = model
|
19 |
+
self.variant = variant
|
20 |
+
self.extra_args = extra_args
|
21 |
+
|
22 |
+
def model_fn(self, x, t):
|
23 |
+
return self.model(x, t, **self.extra_args)
|
24 |
+
|
25 |
+
def update_fn(self, x, model_prev_list, t_prev_list, t, order):
|
26 |
+
assert order <= len(model_prev_list)
|
27 |
+
dims = x.dim()
|
28 |
+
|
29 |
+
t_prev_0 = t_prev_list[-1]
|
30 |
+
lambda_prev_0 = - torch.log(t_prev_0)
|
31 |
+
lambda_t = - torch.log(t)
|
32 |
+
model_prev_0 = model_prev_list[-1]
|
33 |
+
|
34 |
+
h = lambda_t - lambda_prev_0
|
35 |
+
|
36 |
+
rks = []
|
37 |
+
D1s = []
|
38 |
+
for i in range(1, order):
|
39 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
40 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
41 |
+
lambda_prev_i = - torch.log(t_prev_i)
|
42 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
43 |
+
rks.append(rk)
|
44 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
45 |
+
|
46 |
+
rks.append(1.)
|
47 |
+
rks = torch.tensor(rks, device=x.device)
|
48 |
+
|
49 |
+
R = []
|
50 |
+
b = []
|
51 |
+
|
52 |
+
hh = -h[0]
|
53 |
+
h_phi_1 = torch.expm1(hh)
|
54 |
+
h_phi_k = h_phi_1 / hh - 1
|
55 |
+
|
56 |
+
factorial_i = 1
|
57 |
+
|
58 |
+
if self.variant == 'bh1':
|
59 |
+
B_h = hh
|
60 |
+
elif self.variant == 'bh2':
|
61 |
+
B_h = torch.expm1(hh)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError('Bad variant!')
|
64 |
+
|
65 |
+
for i in range(1, order + 1):
|
66 |
+
R.append(torch.pow(rks, i - 1))
|
67 |
+
b.append(h_phi_k * factorial_i / B_h)
|
68 |
+
factorial_i *= (i + 1)
|
69 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
70 |
+
|
71 |
+
R = torch.stack(R)
|
72 |
+
b = torch.tensor(b, device=x.device)
|
73 |
+
|
74 |
+
use_predictor = len(D1s) > 0
|
75 |
+
|
76 |
+
if use_predictor:
|
77 |
+
D1s = torch.stack(D1s, dim=1)
|
78 |
+
if order == 2:
|
79 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
80 |
+
else:
|
81 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
82 |
+
else:
|
83 |
+
D1s = None
|
84 |
+
rhos_p = None
|
85 |
+
|
86 |
+
if order == 1:
|
87 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
88 |
+
else:
|
89 |
+
rhos_c = torch.linalg.solve(R, b)
|
90 |
+
|
91 |
+
x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
|
92 |
+
|
93 |
+
if use_predictor:
|
94 |
+
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
|
95 |
+
else:
|
96 |
+
pred_res = 0
|
97 |
+
|
98 |
+
x_t = x_t_ - expand_dims(B_h, dims) * pred_res
|
99 |
+
model_t = self.model_fn(x_t, t)
|
100 |
+
|
101 |
+
if D1s is not None:
|
102 |
+
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
|
103 |
+
else:
|
104 |
+
corr_res = 0
|
105 |
+
|
106 |
+
D1_t = (model_t - model_prev_0)
|
107 |
+
x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
108 |
+
|
109 |
+
return x_t, model_t
|
110 |
+
|
111 |
+
def sample(self, x, sigmas, callback=None, disable_pbar=False):
|
112 |
+
order = min(3, len(sigmas) - 2)
|
113 |
+
model_prev_list, t_prev_list = [], []
|
114 |
+
try:
|
115 |
+
for i in trange(len(sigmas) - 1, disable=disable_pbar):
|
116 |
+
vec_t = sigmas[i].expand(x.shape[0])
|
117 |
+
|
118 |
+
if i == 0:
|
119 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
120 |
+
t_prev_list = [vec_t]
|
121 |
+
elif i < order:
|
122 |
+
init_order = i
|
123 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
|
124 |
+
model_prev_list.append(model_x)
|
125 |
+
t_prev_list.append(vec_t)
|
126 |
+
else:
|
127 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
|
128 |
+
model_prev_list.append(model_x)
|
129 |
+
t_prev_list.append(vec_t)
|
130 |
+
|
131 |
+
model_prev_list = model_prev_list[-order:]
|
132 |
+
t_prev_list = t_prev_list[-order:]
|
133 |
+
|
134 |
+
if callback is not None:
|
135 |
+
try:
|
136 |
+
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
137 |
+
except KeyboardInterrupt as e:
|
138 |
+
print(f"User interruption detected: {e}")
|
139 |
+
# Return the last available result
|
140 |
+
return model_prev_list[-1]
|
141 |
+
except KeyboardInterrupt as e:
|
142 |
+
print(f"Process interrupted: {e}")
|
143 |
+
# Return the last available result if we have one
|
144 |
+
if model_prev_list:
|
145 |
+
return model_prev_list[-1]
|
146 |
+
else:
|
147 |
+
# If no results yet, re-raise the exception
|
148 |
+
raise
|
149 |
+
|
150 |
+
return model_prev_list[-1]
|
151 |
+
|
152 |
+
|
153 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
154 |
+
assert variant in ['bh1', 'bh2']
|
155 |
+
return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
|
diffusers_helper/k_diffusion/wrapper.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def append_dims(x, target_dims):
|
5 |
+
return x[(...,) + (None,) * (target_dims - x.ndim)]
|
6 |
+
|
7 |
+
|
8 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
|
9 |
+
if guidance_rescale == 0:
|
10 |
+
return noise_cfg
|
11 |
+
|
12 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
15 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
|
16 |
+
return noise_cfg
|
17 |
+
|
18 |
+
|
19 |
+
def fm_wrapper(transformer, t_scale=1000.0):
|
20 |
+
def k_model(x, sigma, **extra_args):
|
21 |
+
dtype = extra_args['dtype']
|
22 |
+
cfg_scale = extra_args['cfg_scale']
|
23 |
+
cfg_rescale = extra_args['cfg_rescale']
|
24 |
+
concat_latent = extra_args['concat_latent']
|
25 |
+
|
26 |
+
original_dtype = x.dtype
|
27 |
+
sigma = sigma.float()
|
28 |
+
|
29 |
+
x = x.to(dtype)
|
30 |
+
timestep = (sigma * t_scale).to(dtype)
|
31 |
+
|
32 |
+
if concat_latent is None:
|
33 |
+
hidden_states = x
|
34 |
+
else:
|
35 |
+
hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
|
36 |
+
|
37 |
+
pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
|
38 |
+
|
39 |
+
if cfg_scale == 1.0:
|
40 |
+
pred_negative = torch.zeros_like(pred_positive)
|
41 |
+
else:
|
42 |
+
pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
|
43 |
+
|
44 |
+
pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
|
45 |
+
pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
|
46 |
+
|
47 |
+
x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
return x0.to(dtype=original_dtype)
|
50 |
+
|
51 |
+
return k_model
|
diffusers_helper/memory.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# By lllyasviel
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
|
7 |
+
# 检查是否在Hugging Face Space环境中
|
8 |
+
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
9 |
+
|
10 |
+
# 设置CPU设备
|
11 |
+
cpu = torch.device('cpu')
|
12 |
+
|
13 |
+
# 在Stateless GPU环境中,不要在主进程初始化CUDA
|
14 |
+
def get_gpu_device():
|
15 |
+
if IN_HF_SPACE:
|
16 |
+
# 在Spaces中将延迟初始化GPU设备
|
17 |
+
return 'cuda' # 返回字符串,而不是实际初始化设备
|
18 |
+
|
19 |
+
# 非Spaces环境正常初始化
|
20 |
+
try:
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
return torch.device(f'cuda:{torch.cuda.current_device()}')
|
23 |
+
else:
|
24 |
+
print("CUDA不可用,使用CPU作为默认设备")
|
25 |
+
return torch.device('cpu')
|
26 |
+
except Exception as e:
|
27 |
+
print(f"初始化CUDA设备时出错: {e}")
|
28 |
+
print("回退到CPU设备")
|
29 |
+
return torch.device('cpu')
|
30 |
+
|
31 |
+
# 保存一个字符串表示,而不是实际的设备对象
|
32 |
+
gpu = get_gpu_device()
|
33 |
+
|
34 |
+
gpu_complete_modules = []
|
35 |
+
|
36 |
+
|
37 |
+
class DynamicSwapInstaller:
|
38 |
+
@staticmethod
|
39 |
+
def _install_module(module: torch.nn.Module, **kwargs):
|
40 |
+
original_class = module.__class__
|
41 |
+
module.__dict__['forge_backup_original_class'] = original_class
|
42 |
+
|
43 |
+
def hacked_get_attr(self, name: str):
|
44 |
+
if '_parameters' in self.__dict__:
|
45 |
+
_parameters = self.__dict__['_parameters']
|
46 |
+
if name in _parameters:
|
47 |
+
p = _parameters[name]
|
48 |
+
if p is None:
|
49 |
+
return None
|
50 |
+
if p.__class__ == torch.nn.Parameter:
|
51 |
+
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
52 |
+
else:
|
53 |
+
return p.to(**kwargs)
|
54 |
+
if '_buffers' in self.__dict__:
|
55 |
+
_buffers = self.__dict__['_buffers']
|
56 |
+
if name in _buffers:
|
57 |
+
return _buffers[name].to(**kwargs)
|
58 |
+
return super(original_class, self).__getattr__(name)
|
59 |
+
|
60 |
+
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
61 |
+
'__getattr__': hacked_get_attr,
|
62 |
+
})
|
63 |
+
|
64 |
+
return
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def _uninstall_module(module: torch.nn.Module):
|
68 |
+
if 'forge_backup_original_class' in module.__dict__:
|
69 |
+
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
70 |
+
return
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def install_model(model: torch.nn.Module, **kwargs):
|
74 |
+
for m in model.modules():
|
75 |
+
DynamicSwapInstaller._install_module(m, **kwargs)
|
76 |
+
return
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def uninstall_model(model: torch.nn.Module):
|
80 |
+
for m in model.modules():
|
81 |
+
DynamicSwapInstaller._uninstall_module(m)
|
82 |
+
return
|
83 |
+
|
84 |
+
|
85 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
|
86 |
+
# 转换字符串设备为torch.device
|
87 |
+
if isinstance(target_device, str):
|
88 |
+
target_device = torch.device(target_device)
|
89 |
+
|
90 |
+
if hasattr(model, 'scale_shift_table'):
|
91 |
+
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
92 |
+
return
|
93 |
+
|
94 |
+
for k, p in model.named_modules():
|
95 |
+
if hasattr(p, 'weight'):
|
96 |
+
p.to(target_device)
|
97 |
+
return
|
98 |
+
|
99 |
+
|
100 |
+
def get_cuda_free_memory_gb(device=None):
|
101 |
+
if device is None:
|
102 |
+
device = gpu
|
103 |
+
|
104 |
+
# 如果是字符串,转换为设备
|
105 |
+
if isinstance(device, str):
|
106 |
+
device = torch.device(device)
|
107 |
+
|
108 |
+
# 如果不是CUDA设备,返回默认值
|
109 |
+
if device.type != 'cuda':
|
110 |
+
print("无法获取非CUDA设备的内存信息,返回默认值")
|
111 |
+
return 6.0 # 返回一个默认值
|
112 |
+
|
113 |
+
try:
|
114 |
+
memory_stats = torch.cuda.memory_stats(device)
|
115 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
116 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
117 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
118 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
119 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
120 |
+
return bytes_total_available / (1024 ** 3)
|
121 |
+
except Exception as e:
|
122 |
+
print(f"获取CUDA内存信息时出错: {e}")
|
123 |
+
return 6.0 # 返回一个默认值
|
124 |
+
|
125 |
+
|
126 |
+
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
127 |
+
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
128 |
+
|
129 |
+
# 如果是字符串,转换为设备
|
130 |
+
if isinstance(target_device, str):
|
131 |
+
target_device = torch.device(target_device)
|
132 |
+
|
133 |
+
# 如果gpu是字符串,转换为设备
|
134 |
+
gpu_device = gpu
|
135 |
+
if isinstance(gpu_device, str):
|
136 |
+
gpu_device = torch.device(gpu_device)
|
137 |
+
|
138 |
+
# 如果目标设备是CPU或当前在CPU上,直接移动
|
139 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
140 |
+
model.to(device=target_device)
|
141 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
142 |
+
return
|
143 |
+
|
144 |
+
for m in model.modules():
|
145 |
+
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
146 |
+
torch.cuda.empty_cache()
|
147 |
+
return
|
148 |
+
|
149 |
+
if hasattr(m, 'weight'):
|
150 |
+
m.to(device=target_device)
|
151 |
+
|
152 |
+
model.to(device=target_device)
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
return
|
155 |
+
|
156 |
+
|
157 |
+
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
158 |
+
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
159 |
+
|
160 |
+
# 如果是字符串,转换为设备
|
161 |
+
if isinstance(target_device, str):
|
162 |
+
target_device = torch.device(target_device)
|
163 |
+
|
164 |
+
# 如果gpu是字符串,转换为设备
|
165 |
+
gpu_device = gpu
|
166 |
+
if isinstance(gpu_device, str):
|
167 |
+
gpu_device = torch.device(gpu_device)
|
168 |
+
|
169 |
+
# 如果目标设备是CPU或当前在CPU上,直接处理
|
170 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
171 |
+
model.to(device=cpu)
|
172 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
173 |
+
return
|
174 |
+
|
175 |
+
for m in model.modules():
|
176 |
+
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
return
|
179 |
+
|
180 |
+
if hasattr(m, 'weight'):
|
181 |
+
m.to(device=cpu)
|
182 |
+
|
183 |
+
model.to(device=cpu)
|
184 |
+
torch.cuda.empty_cache()
|
185 |
+
return
|
186 |
+
|
187 |
+
|
188 |
+
def unload_complete_models(*args):
|
189 |
+
for m in gpu_complete_modules + list(args):
|
190 |
+
m.to(device=cpu)
|
191 |
+
print(f'Unloaded {m.__class__.__name__} as complete.')
|
192 |
+
|
193 |
+
gpu_complete_modules.clear()
|
194 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
195 |
+
return
|
196 |
+
|
197 |
+
|
198 |
+
def load_model_as_complete(model, target_device, unload=True):
|
199 |
+
# 如果是字符串,转换为设备
|
200 |
+
if isinstance(target_device, str):
|
201 |
+
target_device = torch.device(target_device)
|
202 |
+
|
203 |
+
if unload:
|
204 |
+
unload_complete_models()
|
205 |
+
|
206 |
+
model.to(device=target_device)
|
207 |
+
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
208 |
+
|
209 |
+
gpu_complete_modules.append(model)
|
210 |
+
return
|
diffusers_helper/models/hunyuan_video_packed.py
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import einops
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from diffusers.loaders import FromOriginalModelMixin
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.utils import logging
|
12 |
+
from diffusers.models.attention import FeedForward
|
13 |
+
from diffusers.models.attention_processor import Attention
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers_helper.dit_common import LayerNorm
|
18 |
+
from diffusers_helper.utils import zero_module
|
19 |
+
|
20 |
+
|
21 |
+
enabled_backends = []
|
22 |
+
|
23 |
+
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
+
enabled_backends.append("flash")
|
25 |
+
if torch.backends.cuda.math_sdp_enabled():
|
26 |
+
enabled_backends.append("math")
|
27 |
+
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
+
enabled_backends.append("mem_efficient")
|
29 |
+
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
+
enabled_backends.append("cudnn")
|
31 |
+
|
32 |
+
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
+
|
34 |
+
try:
|
35 |
+
# raise NotImplementedError
|
36 |
+
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
+
print('Xformers is installed!')
|
38 |
+
except:
|
39 |
+
print('Xformers is not installed!')
|
40 |
+
xformers_attn_func = None
|
41 |
+
|
42 |
+
try:
|
43 |
+
# raise NotImplementedError
|
44 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
+
print('Flash Attn is installed!')
|
46 |
+
except:
|
47 |
+
print('Flash Attn is not installed!')
|
48 |
+
flash_attn_varlen_func = None
|
49 |
+
flash_attn_func = None
|
50 |
+
|
51 |
+
try:
|
52 |
+
# raise NotImplementedError
|
53 |
+
from sageattention import sageattn_varlen, sageattn
|
54 |
+
print('Sage Attn is installed!')
|
55 |
+
except:
|
56 |
+
print('Sage Attn is not installed!')
|
57 |
+
sageattn_varlen = None
|
58 |
+
sageattn = None
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
+
|
63 |
+
|
64 |
+
def pad_for_3d_conv(x, kernel_size):
|
65 |
+
b, c, t, h, w = x.shape
|
66 |
+
pt, ph, pw = kernel_size
|
67 |
+
pad_t = (pt - (t % pt)) % pt
|
68 |
+
pad_h = (ph - (h % ph)) % ph
|
69 |
+
pad_w = (pw - (w % pw)) % pw
|
70 |
+
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
+
|
72 |
+
|
73 |
+
def center_down_sample_3d(x, kernel_size):
|
74 |
+
# pt, ph, pw = kernel_size
|
75 |
+
# cp = (pt * ph * pw) // 2
|
76 |
+
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
+
# xc = xp[cp]
|
78 |
+
# return xc
|
79 |
+
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
+
|
81 |
+
|
82 |
+
def get_cu_seqlens(text_mask, img_len):
|
83 |
+
batch_size = text_mask.shape[0]
|
84 |
+
text_len = text_mask.sum(dim=1)
|
85 |
+
max_len = text_mask.shape[1] + img_len
|
86 |
+
|
87 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
+
|
89 |
+
for i in range(batch_size):
|
90 |
+
s = text_len[i] + img_len
|
91 |
+
s1 = i * max_len + s
|
92 |
+
s2 = (i + 1) * max_len
|
93 |
+
cu_seqlens[2 * i + 1] = s1
|
94 |
+
cu_seqlens[2 * i + 2] = s2
|
95 |
+
|
96 |
+
return cu_seqlens
|
97 |
+
|
98 |
+
|
99 |
+
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
+
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
+
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
+
out = x.float() * cos + x_rotated.float() * sin
|
104 |
+
out = out.to(x)
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
+
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
+
if sageattn is not None:
|
111 |
+
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
+
return x
|
113 |
+
|
114 |
+
if flash_attn_func is not None:
|
115 |
+
x = flash_attn_func(q, k, v)
|
116 |
+
return x
|
117 |
+
|
118 |
+
if xformers_attn_func is not None:
|
119 |
+
x = xformers_attn_func(q, k, v)
|
120 |
+
return x
|
121 |
+
|
122 |
+
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
+
return x
|
124 |
+
|
125 |
+
batch_size = q.shape[0]
|
126 |
+
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
+
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
+
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
+
if sageattn_varlen is not None:
|
130 |
+
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
+
elif flash_attn_varlen_func is not None:
|
132 |
+
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
+
else:
|
134 |
+
raise NotImplementedError('No Attn Installed!')
|
135 |
+
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
+
|
143 |
+
query = attn.to_q(hidden_states)
|
144 |
+
key = attn.to_k(hidden_states)
|
145 |
+
value = attn.to_v(hidden_states)
|
146 |
+
|
147 |
+
query = query.unflatten(2, (attn.heads, -1))
|
148 |
+
key = key.unflatten(2, (attn.heads, -1))
|
149 |
+
value = value.unflatten(2, (attn.heads, -1))
|
150 |
+
|
151 |
+
query = attn.norm_q(query)
|
152 |
+
key = attn.norm_k(key)
|
153 |
+
|
154 |
+
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
+
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
+
|
157 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
+
|
161 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
+
|
165 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
+
|
168 |
+
query = torch.cat([query, encoder_query], dim=1)
|
169 |
+
key = torch.cat([key, encoder_key], dim=1)
|
170 |
+
value = torch.cat([value, encoder_value], dim=1)
|
171 |
+
|
172 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
+
hidden_states = hidden_states.flatten(-2)
|
174 |
+
|
175 |
+
txt_length = encoder_hidden_states.shape[1]
|
176 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
+
|
178 |
+
hidden_states = attn.to_out[0](hidden_states)
|
179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
180 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
+
|
182 |
+
return hidden_states, encoder_hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
+
|
189 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
+
|
191 |
+
query = attn.to_q(hidden_states)
|
192 |
+
key = attn.to_k(hidden_states)
|
193 |
+
value = attn.to_v(hidden_states)
|
194 |
+
|
195 |
+
query = query.unflatten(2, (attn.heads, -1))
|
196 |
+
key = key.unflatten(2, (attn.heads, -1))
|
197 |
+
value = value.unflatten(2, (attn.heads, -1))
|
198 |
+
|
199 |
+
query = attn.norm_q(query)
|
200 |
+
key = attn.norm_k(key)
|
201 |
+
|
202 |
+
txt_length = encoder_hidden_states.shape[1]
|
203 |
+
|
204 |
+
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
+
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
+
|
207 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
+
hidden_states = hidden_states.flatten(-2)
|
209 |
+
|
210 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
+
|
212 |
+
return hidden_states, encoder_hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
+
|
224 |
+
def forward(self, timestep, guidance, pooled_projection):
|
225 |
+
timesteps_proj = self.time_proj(timestep)
|
226 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
+
|
228 |
+
guidance_proj = self.time_proj(guidance)
|
229 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
+
|
231 |
+
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
+
|
233 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
+
conditioning = time_guidance_emb + pooled_projections
|
235 |
+
|
236 |
+
return conditioning
|
237 |
+
|
238 |
+
|
239 |
+
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
+
|
247 |
+
def forward(self, timestep, pooled_projection):
|
248 |
+
timesteps_proj = self.time_proj(timestep)
|
249 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
+
|
251 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
+
|
253 |
+
conditioning = timesteps_emb + pooled_projections
|
254 |
+
|
255 |
+
return conditioning
|
256 |
+
|
257 |
+
|
258 |
+
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
+
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
out_features = out_features or 2 * in_features
|
263 |
+
self.linear = nn.Linear(in_features, out_features)
|
264 |
+
self.nonlinearity = nn.SiLU()
|
265 |
+
|
266 |
+
def forward(
|
267 |
+
self, temb: torch.Tensor
|
268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
+
temb = self.linear(self.nonlinearity(temb))
|
270 |
+
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
+
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
+
return gate_msa, gate_mlp
|
273 |
+
|
274 |
+
|
275 |
+
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
num_attention_heads: int,
|
279 |
+
attention_head_dim: int,
|
280 |
+
mlp_width_ratio: str = 4.0,
|
281 |
+
mlp_drop_rate: float = 0.0,
|
282 |
+
attention_bias: bool = True,
|
283 |
+
) -> None:
|
284 |
+
super().__init__()
|
285 |
+
|
286 |
+
hidden_size = num_attention_heads * attention_head_dim
|
287 |
+
|
288 |
+
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
+
self.attn = Attention(
|
290 |
+
query_dim=hidden_size,
|
291 |
+
cross_attention_dim=None,
|
292 |
+
heads=num_attention_heads,
|
293 |
+
dim_head=attention_head_dim,
|
294 |
+
bias=attention_bias,
|
295 |
+
)
|
296 |
+
|
297 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
+
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
+
|
300 |
+
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
hidden_states: torch.Tensor,
|
305 |
+
temb: torch.Tensor,
|
306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
309 |
+
|
310 |
+
attn_output = self.attn(
|
311 |
+
hidden_states=norm_hidden_states,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
)
|
315 |
+
|
316 |
+
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
+
|
319 |
+
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
num_attention_heads: int,
|
329 |
+
attention_head_dim: int,
|
330 |
+
num_layers: int,
|
331 |
+
mlp_width_ratio: float = 4.0,
|
332 |
+
mlp_drop_rate: float = 0.0,
|
333 |
+
attention_bias: bool = True,
|
334 |
+
) -> None:
|
335 |
+
super().__init__()
|
336 |
+
|
337 |
+
self.refiner_blocks = nn.ModuleList(
|
338 |
+
[
|
339 |
+
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
+
num_attention_heads=num_attention_heads,
|
341 |
+
attention_head_dim=attention_head_dim,
|
342 |
+
mlp_width_ratio=mlp_width_ratio,
|
343 |
+
mlp_drop_rate=mlp_drop_rate,
|
344 |
+
attention_bias=attention_bias,
|
345 |
+
)
|
346 |
+
for _ in range(num_layers)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
hidden_states: torch.Tensor,
|
353 |
+
temb: torch.Tensor,
|
354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
355 |
+
) -> None:
|
356 |
+
self_attn_mask = None
|
357 |
+
if attention_mask is not None:
|
358 |
+
batch_size = attention_mask.shape[0]
|
359 |
+
seq_len = attention_mask.shape[1]
|
360 |
+
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
+
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
+
self_attn_mask[:, :, :, 0] = True
|
365 |
+
|
366 |
+
for block in self.refiner_blocks:
|
367 |
+
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
+
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
in_channels: int,
|
376 |
+
num_attention_heads: int,
|
377 |
+
attention_head_dim: int,
|
378 |
+
num_layers: int,
|
379 |
+
mlp_ratio: float = 4.0,
|
380 |
+
mlp_drop_rate: float = 0.0,
|
381 |
+
attention_bias: bool = True,
|
382 |
+
) -> None:
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
hidden_size = num_attention_heads * attention_head_dim
|
386 |
+
|
387 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
+
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
+
)
|
390 |
+
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
+
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
+
num_attention_heads=num_attention_heads,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
num_layers=num_layers,
|
395 |
+
mlp_width_ratio=mlp_ratio,
|
396 |
+
mlp_drop_rate=mlp_drop_rate,
|
397 |
+
attention_bias=attention_bias,
|
398 |
+
)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states: torch.Tensor,
|
403 |
+
timestep: torch.LongTensor,
|
404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
+
) -> torch.Tensor:
|
406 |
+
if attention_mask is None:
|
407 |
+
pooled_projections = hidden_states.mean(dim=1)
|
408 |
+
else:
|
409 |
+
original_dtype = hidden_states.dtype
|
410 |
+
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
+
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
+
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
+
|
414 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
+
hidden_states = self.proj_in(hidden_states)
|
416 |
+
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
+
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
|
421 |
+
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
+
def __init__(self, rope_dim, theta):
|
423 |
+
super().__init__()
|
424 |
+
self.DT, self.DY, self.DX = rope_dim
|
425 |
+
self.theta = theta
|
426 |
+
|
427 |
+
@torch.no_grad()
|
428 |
+
def get_frequency(self, dim, pos):
|
429 |
+
T, H, W = pos.shape
|
430 |
+
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
+
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
+
return freqs.cos(), freqs.sin()
|
433 |
+
|
434 |
+
@torch.no_grad()
|
435 |
+
def forward_inner(self, frame_indices, height, width, device):
|
436 |
+
GT, GY, GX = torch.meshgrid(
|
437 |
+
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
+
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
+
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
+
indexing="ij"
|
441 |
+
)
|
442 |
+
|
443 |
+
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
+
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
+
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
+
|
447 |
+
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
+
|
449 |
+
return result.to(device)
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def forward(self, frame_indices, height, width, device):
|
453 |
+
frame_indices = frame_indices.unbind(0)
|
454 |
+
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
+
results = torch.stack(results, dim=0)
|
456 |
+
return results
|
457 |
+
|
458 |
+
|
459 |
+
class AdaLayerNormZero(nn.Module):
|
460 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
+
super().__init__()
|
462 |
+
self.silu = nn.SiLU()
|
463 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
+
if norm_type == "layer_norm":
|
465 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
+
else:
|
467 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
x: torch.Tensor,
|
472 |
+
emb: Optional[torch.Tensor] = None,
|
473 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
+
emb = emb.unsqueeze(-2)
|
475 |
+
emb = self.linear(self.silu(emb))
|
476 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
+
|
480 |
+
|
481 |
+
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
+
super().__init__()
|
484 |
+
|
485 |
+
self.silu = nn.SiLU()
|
486 |
+
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
+
if norm_type == "layer_norm":
|
488 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
+
else:
|
490 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
+
|
492 |
+
def forward(
|
493 |
+
self,
|
494 |
+
x: torch.Tensor,
|
495 |
+
emb: Optional[torch.Tensor] = None,
|
496 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
+
emb = emb.unsqueeze(-2)
|
498 |
+
emb = self.linear(self.silu(emb))
|
499 |
+
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
+
return x, gate_msa
|
502 |
+
|
503 |
+
|
504 |
+
class AdaLayerNormContinuous(nn.Module):
|
505 |
+
def __init__(
|
506 |
+
self,
|
507 |
+
embedding_dim: int,
|
508 |
+
conditioning_embedding_dim: int,
|
509 |
+
elementwise_affine=True,
|
510 |
+
eps=1e-5,
|
511 |
+
bias=True,
|
512 |
+
norm_type="layer_norm",
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.silu = nn.SiLU()
|
516 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
+
if norm_type == "layer_norm":
|
518 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
+
else:
|
520 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
+
|
522 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
+
emb = emb.unsqueeze(-2)
|
524 |
+
emb = self.linear(self.silu(emb))
|
525 |
+
scale, shift = emb.chunk(2, dim=-1)
|
526 |
+
x = self.norm(x) * (1 + scale) + shift
|
527 |
+
return x
|
528 |
+
|
529 |
+
|
530 |
+
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
num_attention_heads: int,
|
534 |
+
attention_head_dim: int,
|
535 |
+
mlp_ratio: float = 4.0,
|
536 |
+
qk_norm: str = "rms_norm",
|
537 |
+
) -> None:
|
538 |
+
super().__init__()
|
539 |
+
|
540 |
+
hidden_size = num_attention_heads * attention_head_dim
|
541 |
+
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
+
|
543 |
+
self.attn = Attention(
|
544 |
+
query_dim=hidden_size,
|
545 |
+
cross_attention_dim=None,
|
546 |
+
dim_head=attention_head_dim,
|
547 |
+
heads=num_attention_heads,
|
548 |
+
out_dim=hidden_size,
|
549 |
+
bias=True,
|
550 |
+
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
+
qk_norm=qk_norm,
|
552 |
+
eps=1e-6,
|
553 |
+
pre_only=True,
|
554 |
+
)
|
555 |
+
|
556 |
+
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
+
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
+
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
+
|
561 |
+
def forward(
|
562 |
+
self,
|
563 |
+
hidden_states: torch.Tensor,
|
564 |
+
encoder_hidden_states: torch.Tensor,
|
565 |
+
temb: torch.Tensor,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
+
) -> torch.Tensor:
|
569 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
+
|
572 |
+
residual = hidden_states
|
573 |
+
|
574 |
+
# 1. Input normalization
|
575 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
+
|
578 |
+
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
+
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
+
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
+
)
|
582 |
+
|
583 |
+
# 2. Attention
|
584 |
+
attn_output, context_attn_output = self.attn(
|
585 |
+
hidden_states=norm_hidden_states,
|
586 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
image_rotary_emb=image_rotary_emb,
|
589 |
+
)
|
590 |
+
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
+
|
592 |
+
# 3. Modulation and residual connection
|
593 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
+
hidden_states = hidden_states + residual
|
596 |
+
|
597 |
+
hidden_states, encoder_hidden_states = (
|
598 |
+
hidden_states[:, :-text_seq_length, :],
|
599 |
+
hidden_states[:, -text_seq_length:, :],
|
600 |
+
)
|
601 |
+
return hidden_states, encoder_hidden_states
|
602 |
+
|
603 |
+
|
604 |
+
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
+
def __init__(
|
606 |
+
self,
|
607 |
+
num_attention_heads: int,
|
608 |
+
attention_head_dim: int,
|
609 |
+
mlp_ratio: float,
|
610 |
+
qk_norm: str = "rms_norm",
|
611 |
+
) -> None:
|
612 |
+
super().__init__()
|
613 |
+
|
614 |
+
hidden_size = num_attention_heads * attention_head_dim
|
615 |
+
|
616 |
+
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
+
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
+
|
619 |
+
self.attn = Attention(
|
620 |
+
query_dim=hidden_size,
|
621 |
+
cross_attention_dim=None,
|
622 |
+
added_kv_proj_dim=hidden_size,
|
623 |
+
dim_head=attention_head_dim,
|
624 |
+
heads=num_attention_heads,
|
625 |
+
out_dim=hidden_size,
|
626 |
+
context_pre_only=False,
|
627 |
+
bias=True,
|
628 |
+
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
+
qk_norm=qk_norm,
|
630 |
+
eps=1e-6,
|
631 |
+
)
|
632 |
+
|
633 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
+
|
636 |
+
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
+
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
hidden_states: torch.Tensor,
|
642 |
+
encoder_hidden_states: torch.Tensor,
|
643 |
+
temb: torch.Tensor,
|
644 |
+
attention_mask: Optional[torch.Tensor] = None,
|
645 |
+
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
+
# 1. Input normalization
|
648 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
+
|
651 |
+
# 2. Joint attention
|
652 |
+
attn_output, context_attn_output = self.attn(
|
653 |
+
hidden_states=norm_hidden_states,
|
654 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
+
attention_mask=attention_mask,
|
656 |
+
image_rotary_emb=freqs_cis,
|
657 |
+
)
|
658 |
+
|
659 |
+
# 3. Modulation and residual connection
|
660 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
+
|
663 |
+
norm_hidden_states = self.norm2(hidden_states)
|
664 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
+
|
666 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
+
|
669 |
+
# 4. Feed-forward
|
670 |
+
ff_output = self.ff(norm_hidden_states)
|
671 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
+
|
673 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
+
|
676 |
+
return hidden_states, encoder_hidden_states
|
677 |
+
|
678 |
+
|
679 |
+
class ClipVisionProjection(nn.Module):
|
680 |
+
def __init__(self, in_channels, out_channels):
|
681 |
+
super().__init__()
|
682 |
+
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
+
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
+
return projected_x
|
688 |
+
|
689 |
+
|
690 |
+
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
+
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
+
super().__init__()
|
693 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
+
|
695 |
+
|
696 |
+
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
+
def __init__(self, inner_dim):
|
698 |
+
super().__init__()
|
699 |
+
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
+
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
+
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
+
weight = another_layer.weight.detach().clone()
|
706 |
+
bias = another_layer.bias.detach().clone()
|
707 |
+
|
708 |
+
sd = {
|
709 |
+
'proj.weight': weight.clone(),
|
710 |
+
'proj.bias': bias.clone(),
|
711 |
+
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
+
'proj_2x.bias': bias.clone(),
|
713 |
+
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
+
'proj_4x.bias': bias.clone(),
|
715 |
+
}
|
716 |
+
|
717 |
+
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
+
|
719 |
+
self.load_state_dict(sd)
|
720 |
+
return
|
721 |
+
|
722 |
+
|
723 |
+
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
+
@register_to_config
|
725 |
+
def __init__(
|
726 |
+
self,
|
727 |
+
in_channels: int = 16,
|
728 |
+
out_channels: int = 16,
|
729 |
+
num_attention_heads: int = 24,
|
730 |
+
attention_head_dim: int = 128,
|
731 |
+
num_layers: int = 20,
|
732 |
+
num_single_layers: int = 40,
|
733 |
+
num_refiner_layers: int = 2,
|
734 |
+
mlp_ratio: float = 4.0,
|
735 |
+
patch_size: int = 2,
|
736 |
+
patch_size_t: int = 1,
|
737 |
+
qk_norm: str = "rms_norm",
|
738 |
+
guidance_embeds: bool = True,
|
739 |
+
text_embed_dim: int = 4096,
|
740 |
+
pooled_projection_dim: int = 768,
|
741 |
+
rope_theta: float = 256.0,
|
742 |
+
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
+
has_image_proj=False,
|
744 |
+
image_proj_dim=1152,
|
745 |
+
has_clean_x_embedder=False,
|
746 |
+
) -> None:
|
747 |
+
super().__init__()
|
748 |
+
|
749 |
+
inner_dim = num_attention_heads * attention_head_dim
|
750 |
+
out_channels = out_channels or in_channels
|
751 |
+
|
752 |
+
# 1. Latent and condition embedders
|
753 |
+
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
+
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
+
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
+
)
|
757 |
+
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
+
|
759 |
+
self.clean_x_embedder = None
|
760 |
+
self.image_projection = None
|
761 |
+
|
762 |
+
# 2. RoPE
|
763 |
+
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
+
|
765 |
+
# 3. Dual stream transformer blocks
|
766 |
+
self.transformer_blocks = nn.ModuleList(
|
767 |
+
[
|
768 |
+
HunyuanVideoTransformerBlock(
|
769 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
+
)
|
771 |
+
for _ in range(num_layers)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
|
775 |
+
# 4. Single stream transformer blocks
|
776 |
+
self.single_transformer_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
HunyuanVideoSingleTransformerBlock(
|
779 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
+
)
|
781 |
+
for _ in range(num_single_layers)
|
782 |
+
]
|
783 |
+
)
|
784 |
+
|
785 |
+
# 5. Output projection
|
786 |
+
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
+
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
+
|
789 |
+
self.inner_dim = inner_dim
|
790 |
+
self.use_gradient_checkpointing = False
|
791 |
+
self.enable_teacache = False
|
792 |
+
|
793 |
+
if has_image_proj:
|
794 |
+
self.install_image_projection(image_proj_dim)
|
795 |
+
|
796 |
+
if has_clean_x_embedder:
|
797 |
+
self.install_clean_x_embedder()
|
798 |
+
|
799 |
+
self.high_quality_fp32_output_for_inference = False
|
800 |
+
|
801 |
+
def install_image_projection(self, in_channels):
|
802 |
+
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
+
self.config['has_image_proj'] = True
|
804 |
+
self.config['image_proj_dim'] = in_channels
|
805 |
+
|
806 |
+
def install_clean_x_embedder(self):
|
807 |
+
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
+
self.config['has_clean_x_embedder'] = True
|
809 |
+
|
810 |
+
def enable_gradient_checkpointing(self):
|
811 |
+
self.use_gradient_checkpointing = True
|
812 |
+
print('self.use_gradient_checkpointing = True')
|
813 |
+
|
814 |
+
def disable_gradient_checkpointing(self):
|
815 |
+
self.use_gradient_checkpointing = False
|
816 |
+
print('self.use_gradient_checkpointing = False')
|
817 |
+
|
818 |
+
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
+
self.enable_teacache = enable_teacache
|
820 |
+
self.cnt = 0
|
821 |
+
self.num_steps = num_steps
|
822 |
+
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
+
self.accumulated_rel_l1_distance = 0
|
824 |
+
self.previous_modulated_input = None
|
825 |
+
self.previous_residual = None
|
826 |
+
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
+
|
828 |
+
def gradient_checkpointing_method(self, block, *args):
|
829 |
+
if self.use_gradient_checkpointing:
|
830 |
+
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
+
else:
|
832 |
+
result = block(*args)
|
833 |
+
return result
|
834 |
+
|
835 |
+
def process_input_hidden_states(
|
836 |
+
self,
|
837 |
+
latents, latent_indices=None,
|
838 |
+
clean_latents=None, clean_latent_indices=None,
|
839 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
+
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
+
):
|
842 |
+
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
+
B, C, T, H, W = hidden_states.shape
|
844 |
+
|
845 |
+
if latent_indices is None:
|
846 |
+
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
+
|
848 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
+
|
850 |
+
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
+
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
+
|
853 |
+
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
+
clean_latents = clean_latents.to(hidden_states)
|
855 |
+
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
+
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
+
|
858 |
+
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
+
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
+
|
861 |
+
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
+
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
+
|
864 |
+
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
+
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
+
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
+
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
+
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
+
|
870 |
+
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
+
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
+
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
+
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
+
|
875 |
+
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
+
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
+
|
878 |
+
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
+
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
+
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
+
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
+
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
+
|
884 |
+
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
+
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
+
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
+
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
+
|
889 |
+
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
+
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
+
|
892 |
+
return hidden_states, rope_freqs
|
893 |
+
|
894 |
+
def forward(
|
895 |
+
self,
|
896 |
+
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
+
latent_indices=None,
|
898 |
+
clean_latents=None, clean_latent_indices=None,
|
899 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
+
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
+
image_embeddings=None,
|
902 |
+
attention_kwargs=None, return_dict=True
|
903 |
+
):
|
904 |
+
|
905 |
+
if attention_kwargs is None:
|
906 |
+
attention_kwargs = {}
|
907 |
+
|
908 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
+
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
+
post_patch_num_frames = num_frames // p_t
|
911 |
+
post_patch_height = height // p
|
912 |
+
post_patch_width = width // p
|
913 |
+
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
+
|
915 |
+
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
+
|
917 |
+
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
+
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
+
|
920 |
+
if self.image_projection is not None:
|
921 |
+
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
+
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
+
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
+
|
925 |
+
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
+
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
+
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
+
|
929 |
+
with torch.no_grad():
|
930 |
+
if batch_size == 1:
|
931 |
+
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
+
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
+
text_len = encoder_attention_mask.sum().item()
|
934 |
+
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
+
attention_mask = None, None, None, None
|
936 |
+
else:
|
937 |
+
img_seq_len = hidden_states.shape[1]
|
938 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
+
|
940 |
+
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
+
cu_seqlens_kv = cu_seqlens_q
|
942 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
+
max_seqlen_kv = max_seqlen_q
|
944 |
+
|
945 |
+
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
+
|
947 |
+
if self.enable_teacache:
|
948 |
+
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
+
|
950 |
+
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
+
should_calc = True
|
952 |
+
self.accumulated_rel_l1_distance = 0
|
953 |
+
else:
|
954 |
+
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
+
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
+
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
+
|
958 |
+
if should_calc:
|
959 |
+
self.accumulated_rel_l1_distance = 0
|
960 |
+
|
961 |
+
self.previous_modulated_input = modulated_inp
|
962 |
+
self.cnt += 1
|
963 |
+
|
964 |
+
if self.cnt == self.num_steps:
|
965 |
+
self.cnt = 0
|
966 |
+
|
967 |
+
if not should_calc:
|
968 |
+
hidden_states = hidden_states + self.previous_residual
|
969 |
+
else:
|
970 |
+
ori_hidden_states = hidden_states.clone()
|
971 |
+
|
972 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
+
block,
|
975 |
+
hidden_states,
|
976 |
+
encoder_hidden_states,
|
977 |
+
temb,
|
978 |
+
attention_mask,
|
979 |
+
rope_freqs
|
980 |
+
)
|
981 |
+
|
982 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
+
block,
|
985 |
+
hidden_states,
|
986 |
+
encoder_hidden_states,
|
987 |
+
temb,
|
988 |
+
attention_mask,
|
989 |
+
rope_freqs
|
990 |
+
)
|
991 |
+
|
992 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
+
else:
|
994 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
+
block,
|
997 |
+
hidden_states,
|
998 |
+
encoder_hidden_states,
|
999 |
+
temb,
|
1000 |
+
attention_mask,
|
1001 |
+
rope_freqs
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
+
block,
|
1007 |
+
hidden_states,
|
1008 |
+
encoder_hidden_states,
|
1009 |
+
temb,
|
1010 |
+
attention_mask,
|
1011 |
+
rope_freqs
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
+
|
1016 |
+
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
+
|
1018 |
+
if self.high_quality_fp32_output_for_inference:
|
1019 |
+
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
+
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
+
self.proj_out.to(dtype=torch.float32)
|
1022 |
+
|
1023 |
+
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
+
|
1025 |
+
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
+
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
+
pt=p_t, ph=p, pw=p)
|
1028 |
+
|
1029 |
+
if return_dict:
|
1030 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
+
|
1032 |
+
return hidden_states,
|
diffusers_helper/pipelines/k_diffusion_hunyuan.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
5 |
+
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
6 |
+
from diffusers_helper.utils import repeat_to_batch_size
|
7 |
+
|
8 |
+
|
9 |
+
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
10 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
11 |
+
|
12 |
+
|
13 |
+
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
14 |
+
k = (y2 - y1) / (x2 - x1)
|
15 |
+
b = y1 - k * x1
|
16 |
+
mu = k * context_length + b
|
17 |
+
mu = min(mu, math.log(exp_max))
|
18 |
+
return mu
|
19 |
+
|
20 |
+
|
21 |
+
def get_flux_sigmas_from_mu(n, mu):
|
22 |
+
sigmas = torch.linspace(1, 0, steps=n + 1)
|
23 |
+
sigmas = flux_time_shift(sigmas, mu=mu)
|
24 |
+
return sigmas
|
25 |
+
|
26 |
+
|
27 |
+
@torch.inference_mode()
|
28 |
+
def sample_hunyuan(
|
29 |
+
transformer,
|
30 |
+
sampler='unipc',
|
31 |
+
initial_latent=None,
|
32 |
+
concat_latent=None,
|
33 |
+
strength=1.0,
|
34 |
+
width=512,
|
35 |
+
height=512,
|
36 |
+
frames=16,
|
37 |
+
real_guidance_scale=1.0,
|
38 |
+
distilled_guidance_scale=6.0,
|
39 |
+
guidance_rescale=0.0,
|
40 |
+
shift=None,
|
41 |
+
num_inference_steps=25,
|
42 |
+
batch_size=None,
|
43 |
+
generator=None,
|
44 |
+
prompt_embeds=None,
|
45 |
+
prompt_embeds_mask=None,
|
46 |
+
prompt_poolers=None,
|
47 |
+
negative_prompt_embeds=None,
|
48 |
+
negative_prompt_embeds_mask=None,
|
49 |
+
negative_prompt_poolers=None,
|
50 |
+
dtype=torch.bfloat16,
|
51 |
+
device=None,
|
52 |
+
negative_kwargs=None,
|
53 |
+
callback=None,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
device = device or transformer.device
|
57 |
+
|
58 |
+
if batch_size is None:
|
59 |
+
batch_size = int(prompt_embeds.shape[0])
|
60 |
+
|
61 |
+
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
62 |
+
|
63 |
+
B, C, T, H, W = latents.shape
|
64 |
+
seq_length = T * H * W // 4
|
65 |
+
|
66 |
+
if shift is None:
|
67 |
+
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
68 |
+
else:
|
69 |
+
mu = math.log(shift)
|
70 |
+
|
71 |
+
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
72 |
+
|
73 |
+
k_model = fm_wrapper(transformer)
|
74 |
+
|
75 |
+
if initial_latent is not None:
|
76 |
+
sigmas = sigmas * strength
|
77 |
+
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
78 |
+
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
79 |
+
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
80 |
+
|
81 |
+
if concat_latent is not None:
|
82 |
+
concat_latent = concat_latent.to(latents)
|
83 |
+
|
84 |
+
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
85 |
+
|
86 |
+
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
87 |
+
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
88 |
+
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
89 |
+
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
90 |
+
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
91 |
+
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
92 |
+
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
93 |
+
|
94 |
+
sampler_kwargs = dict(
|
95 |
+
dtype=dtype,
|
96 |
+
cfg_scale=real_guidance_scale,
|
97 |
+
cfg_rescale=guidance_rescale,
|
98 |
+
concat_latent=concat_latent,
|
99 |
+
positive=dict(
|
100 |
+
pooled_projections=prompt_poolers,
|
101 |
+
encoder_hidden_states=prompt_embeds,
|
102 |
+
encoder_attention_mask=prompt_embeds_mask,
|
103 |
+
guidance=distilled_guidance,
|
104 |
+
**kwargs,
|
105 |
+
),
|
106 |
+
negative=dict(
|
107 |
+
pooled_projections=negative_prompt_poolers,
|
108 |
+
encoder_hidden_states=negative_prompt_embeds,
|
109 |
+
encoder_attention_mask=negative_prompt_embeds_mask,
|
110 |
+
guidance=distilled_guidance,
|
111 |
+
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
if sampler == 'unipc':
|
116 |
+
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
119 |
+
|
120 |
+
return results
|
diffusers_helper/thread_utils.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from threading import Thread, Lock
|
4 |
+
|
5 |
+
|
6 |
+
class Listener:
|
7 |
+
task_queue = []
|
8 |
+
lock = Lock()
|
9 |
+
thread = None
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
def _process_tasks(cls):
|
13 |
+
while True:
|
14 |
+
task = None
|
15 |
+
with cls.lock:
|
16 |
+
if cls.task_queue:
|
17 |
+
task = cls.task_queue.pop(0)
|
18 |
+
|
19 |
+
if task is None:
|
20 |
+
time.sleep(0.001)
|
21 |
+
continue
|
22 |
+
|
23 |
+
func, args, kwargs = task
|
24 |
+
try:
|
25 |
+
func(*args, **kwargs)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error in listener thread: {e}")
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def add_task(cls, func, *args, **kwargs):
|
31 |
+
with cls.lock:
|
32 |
+
cls.task_queue.append((func, args, kwargs))
|
33 |
+
|
34 |
+
if cls.thread is None:
|
35 |
+
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
36 |
+
cls.thread.start()
|
37 |
+
|
38 |
+
|
39 |
+
def async_run(func, *args, **kwargs):
|
40 |
+
Listener.add_task(func, *args, **kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class FIFOQueue:
|
44 |
+
def __init__(self):
|
45 |
+
self.queue = []
|
46 |
+
self.lock = Lock()
|
47 |
+
print("【调试】创建新的FIFOQueue")
|
48 |
+
|
49 |
+
def push(self, item):
|
50 |
+
print(f"【调试】FIFOQueue.push: 准备添加项目: {item}")
|
51 |
+
with self.lock:
|
52 |
+
self.queue.append(item)
|
53 |
+
print(f"【调试】FIFOQueue.push: 成功添加项目: {item}, 当前队列长度: {len(self.queue)}")
|
54 |
+
|
55 |
+
def pop(self):
|
56 |
+
print("【调试】FIFOQueue.pop: 准备弹出队列首项")
|
57 |
+
with self.lock:
|
58 |
+
if self.queue:
|
59 |
+
item = self.queue.pop(0)
|
60 |
+
print(f"【调试】FIFOQueue.pop: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
61 |
+
return item
|
62 |
+
print("【调试】FIFOQueue.pop: 队列为空,返回None")
|
63 |
+
return None
|
64 |
+
|
65 |
+
def top(self):
|
66 |
+
print("【调试】FIFOQueue.top: 准备查看队列首项")
|
67 |
+
with self.lock:
|
68 |
+
if self.queue:
|
69 |
+
item = self.queue[0]
|
70 |
+
print(f"【调试】FIFOQueue.top: 队列首项为: {item}, 当前队列长度: {len(self.queue)}")
|
71 |
+
return item
|
72 |
+
print("【调试】FIFOQueue.top: 队列为空,返回None")
|
73 |
+
return None
|
74 |
+
|
75 |
+
def next(self):
|
76 |
+
print("【调试】FIFOQueue.next: 等待弹出队列首项")
|
77 |
+
while True:
|
78 |
+
with self.lock:
|
79 |
+
if self.queue:
|
80 |
+
item = self.queue.pop(0)
|
81 |
+
print(f"【调试】FIFOQueue.next: 成功弹出项目: {item}, 剩余队列长度: {len(self.queue)}")
|
82 |
+
return item
|
83 |
+
|
84 |
+
time.sleep(0.001)
|
85 |
+
|
86 |
+
|
87 |
+
class AsyncStream:
|
88 |
+
def __init__(self):
|
89 |
+
self.input_queue = FIFOQueue()
|
90 |
+
self.output_queue = FIFOQueue()
|
91 |
+
|
92 |
+
|
93 |
+
class InterruptibleStreamData:
|
94 |
+
def __init__(self):
|
95 |
+
self.input_queue = FIFOQueue()
|
96 |
+
self.output_queue = FIFOQueue()
|
97 |
+
print("【调试】创建新的InterruptibleStreamData,初始化输入输出队列")
|
98 |
+
|
99 |
+
# 推送数据至输出队列
|
100 |
+
def push_output(self, item):
|
101 |
+
print(f"【调试】InterruptibleStreamData.push_output: 准备推送输出: {type(item)}")
|
102 |
+
self.output_queue.push(item)
|
103 |
+
print(f"【调试】InterruptibleStreamData.push_output: 成功推送输出")
|
104 |
+
|
105 |
+
# 获取下一个输出数据
|
106 |
+
def get_output(self):
|
107 |
+
print("【调试】InterruptibleStreamData.get_output: 准备获取下一个输出数据")
|
108 |
+
item = self.output_queue.next()
|
109 |
+
print(f"【调试】InterruptibleStreamData.get_output: 获取到输出数据: {type(item)}")
|
110 |
+
return item
|
111 |
+
|
112 |
+
# 推送数据至输入队列
|
113 |
+
def push_input(self, item):
|
114 |
+
print(f"【调试】InterruptibleStreamData.push_input: 准备推送输入: {type(item)}")
|
115 |
+
self.input_queue.push(item)
|
116 |
+
print(f"【调试】InterruptibleStreamData.push_input: 成功推送输入")
|
117 |
+
|
118 |
+
# 获取下一个输入数据
|
119 |
+
def get_input(self):
|
120 |
+
print("【调试】InterruptibleStreamData.get_input: 准备获取下一个输入数据")
|
121 |
+
item = self.input_queue.next()
|
122 |
+
print(f"【调试】InterruptibleStreamData.get_input: 获取到输入数据: {type(item)}")
|
123 |
+
return item
|
diffusers_helper/utils.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
import glob
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import numpy as np
|
9 |
+
import datetime
|
10 |
+
import torchvision
|
11 |
+
|
12 |
+
import safetensors.torch as sf
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def min_resize(x, m):
|
17 |
+
if x.shape[0] < x.shape[1]:
|
18 |
+
s0 = m
|
19 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
20 |
+
else:
|
21 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
22 |
+
s1 = m
|
23 |
+
new_max = max(s1, s0)
|
24 |
+
raw_max = max(x.shape[0], x.shape[1])
|
25 |
+
if new_max < raw_max:
|
26 |
+
interpolation = cv2.INTER_AREA
|
27 |
+
else:
|
28 |
+
interpolation = cv2.INTER_LANCZOS4
|
29 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
30 |
+
return y
|
31 |
+
|
32 |
+
|
33 |
+
def d_resize(x, y):
|
34 |
+
H, W, C = y.shape
|
35 |
+
new_min = min(H, W)
|
36 |
+
raw_min = min(x.shape[0], x.shape[1])
|
37 |
+
if new_min < raw_min:
|
38 |
+
interpolation = cv2.INTER_AREA
|
39 |
+
else:
|
40 |
+
interpolation = cv2.INTER_LANCZOS4
|
41 |
+
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_center_crop(image, target_width, target_height):
|
46 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
47 |
+
return image
|
48 |
+
|
49 |
+
pil_image = Image.fromarray(image)
|
50 |
+
original_width, original_height = pil_image.size
|
51 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
52 |
+
resized_width = int(round(original_width * scale_factor))
|
53 |
+
resized_height = int(round(original_height * scale_factor))
|
54 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
55 |
+
left = (resized_width - target_width) / 2
|
56 |
+
top = (resized_height - target_height) / 2
|
57 |
+
right = (resized_width + target_width) / 2
|
58 |
+
bottom = (resized_height + target_height) / 2
|
59 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
60 |
+
return np.array(cropped_image)
|
61 |
+
|
62 |
+
|
63 |
+
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
64 |
+
B, C, H, W = image.shape
|
65 |
+
|
66 |
+
if H == target_height and W == target_width:
|
67 |
+
return image
|
68 |
+
|
69 |
+
scale_factor = max(target_width / W, target_height / H)
|
70 |
+
resized_width = int(round(W * scale_factor))
|
71 |
+
resized_height = int(round(H * scale_factor))
|
72 |
+
|
73 |
+
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
74 |
+
|
75 |
+
top = (resized_height - target_height) // 2
|
76 |
+
left = (resized_width - target_width) // 2
|
77 |
+
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
78 |
+
|
79 |
+
return cropped
|
80 |
+
|
81 |
+
|
82 |
+
def resize_without_crop(image, target_width, target_height):
|
83 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
84 |
+
return image
|
85 |
+
|
86 |
+
pil_image = Image.fromarray(image)
|
87 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
88 |
+
return np.array(resized_image)
|
89 |
+
|
90 |
+
|
91 |
+
def just_crop(image, w, h):
|
92 |
+
if h == image.shape[0] and w == image.shape[1]:
|
93 |
+
return image
|
94 |
+
|
95 |
+
original_height, original_width = image.shape[:2]
|
96 |
+
k = min(original_height / h, original_width / w)
|
97 |
+
new_width = int(round(w * k))
|
98 |
+
new_height = int(round(h * k))
|
99 |
+
x_start = (original_width - new_width) // 2
|
100 |
+
y_start = (original_height - new_height) // 2
|
101 |
+
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
102 |
+
return cropped_image
|
103 |
+
|
104 |
+
|
105 |
+
def write_to_json(data, file_path):
|
106 |
+
temp_file_path = file_path + ".tmp"
|
107 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
108 |
+
json.dump(data, temp_file, indent=4)
|
109 |
+
os.replace(temp_file_path, file_path)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
def read_from_json(file_path):
|
114 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
115 |
+
data = json.load(file)
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def get_active_parameters(m):
|
120 |
+
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
121 |
+
|
122 |
+
|
123 |
+
def cast_training_params(m, dtype=torch.float32):
|
124 |
+
result = {}
|
125 |
+
for n, param in m.named_parameters():
|
126 |
+
if param.requires_grad:
|
127 |
+
param.data = param.to(dtype)
|
128 |
+
result[n] = param
|
129 |
+
return result
|
130 |
+
|
131 |
+
|
132 |
+
def separate_lora_AB(parameters, B_patterns=None):
|
133 |
+
parameters_normal = {}
|
134 |
+
parameters_B = {}
|
135 |
+
|
136 |
+
if B_patterns is None:
|
137 |
+
B_patterns = ['.lora_B.', '__zero__']
|
138 |
+
|
139 |
+
for k, v in parameters.items():
|
140 |
+
if any(B_pattern in k for B_pattern in B_patterns):
|
141 |
+
parameters_B[k] = v
|
142 |
+
else:
|
143 |
+
parameters_normal[k] = v
|
144 |
+
|
145 |
+
return parameters_normal, parameters_B
|
146 |
+
|
147 |
+
|
148 |
+
def set_attr_recursive(obj, attr, value):
|
149 |
+
attrs = attr.split(".")
|
150 |
+
for name in attrs[:-1]:
|
151 |
+
obj = getattr(obj, name)
|
152 |
+
setattr(obj, attrs[-1], value)
|
153 |
+
return
|
154 |
+
|
155 |
+
|
156 |
+
def print_tensor_list_size(tensors):
|
157 |
+
total_size = 0
|
158 |
+
total_elements = 0
|
159 |
+
|
160 |
+
if isinstance(tensors, dict):
|
161 |
+
tensors = tensors.values()
|
162 |
+
|
163 |
+
for tensor in tensors:
|
164 |
+
total_size += tensor.nelement() * tensor.element_size()
|
165 |
+
total_elements += tensor.nelement()
|
166 |
+
|
167 |
+
total_size_MB = total_size / (1024 ** 2)
|
168 |
+
total_elements_B = total_elements / 1e9
|
169 |
+
|
170 |
+
print(f"Total number of tensors: {len(tensors)}")
|
171 |
+
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
172 |
+
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
173 |
+
return
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
178 |
+
batch_size = a.size(0)
|
179 |
+
|
180 |
+
if b is None:
|
181 |
+
b = torch.zeros_like(a)
|
182 |
+
|
183 |
+
if mask_a is None:
|
184 |
+
mask_a = torch.rand(batch_size) < probability_a
|
185 |
+
|
186 |
+
mask_a = mask_a.to(a.device)
|
187 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
188 |
+
result = torch.where(mask_a, a, b)
|
189 |
+
return result
|
190 |
+
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def zero_module(module):
|
194 |
+
for p in module.parameters():
|
195 |
+
p.detach().zero_()
|
196 |
+
return module
|
197 |
+
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def supress_lower_channels(m, k, alpha=0.01):
|
201 |
+
data = m.weight.data.clone()
|
202 |
+
|
203 |
+
assert int(data.shape[1]) >= k
|
204 |
+
|
205 |
+
data[:, :k] = data[:, :k] * alpha
|
206 |
+
m.weight.data = data.contiguous().clone()
|
207 |
+
return m
|
208 |
+
|
209 |
+
|
210 |
+
def freeze_module(m):
|
211 |
+
if not hasattr(m, '_forward_inside_frozen_module'):
|
212 |
+
m._forward_inside_frozen_module = m.forward
|
213 |
+
m.requires_grad_(False)
|
214 |
+
m.forward = torch.no_grad()(m.forward)
|
215 |
+
return m
|
216 |
+
|
217 |
+
|
218 |
+
def get_latest_safetensors(folder_path):
|
219 |
+
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
220 |
+
|
221 |
+
if not safetensors_files:
|
222 |
+
raise ValueError('No file to resume!')
|
223 |
+
|
224 |
+
latest_file = max(safetensors_files, key=os.path.getmtime)
|
225 |
+
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
226 |
+
return latest_file
|
227 |
+
|
228 |
+
|
229 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
230 |
+
tags = tags_str.split(', ')
|
231 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
232 |
+
prompt = ', '.join(tags)
|
233 |
+
return prompt
|
234 |
+
|
235 |
+
|
236 |
+
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
237 |
+
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
238 |
+
if round_to_int:
|
239 |
+
numbers = np.round(numbers).astype(int)
|
240 |
+
return numbers.tolist()
|
241 |
+
|
242 |
+
|
243 |
+
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
244 |
+
edges = np.linspace(0, 1, n + 1)
|
245 |
+
points = np.random.uniform(edges[:-1], edges[1:])
|
246 |
+
numbers = inclusive + (exclusive - inclusive) * points
|
247 |
+
if round_to_int:
|
248 |
+
numbers = np.round(numbers).astype(int)
|
249 |
+
return numbers.tolist()
|
250 |
+
|
251 |
+
|
252 |
+
def soft_append_bcthw(history, current, overlap=0):
|
253 |
+
if overlap <= 0:
|
254 |
+
return torch.cat([history, current], dim=2)
|
255 |
+
|
256 |
+
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
257 |
+
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
258 |
+
|
259 |
+
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
260 |
+
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
261 |
+
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
262 |
+
|
263 |
+
return output.to(history)
|
264 |
+
|
265 |
+
|
266 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
267 |
+
b, c, t, h, w = x.shape
|
268 |
+
|
269 |
+
per_row = b
|
270 |
+
for p in [6, 5, 4, 3, 2]:
|
271 |
+
if b % p == 0:
|
272 |
+
per_row = p
|
273 |
+
break
|
274 |
+
|
275 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
276 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
277 |
+
x = x.detach().cpu().to(torch.uint8)
|
278 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
279 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': '0'})
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
def save_bcthw_as_png(x, output_filename):
|
284 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
285 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
286 |
+
x = x.detach().cpu().to(torch.uint8)
|
287 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
288 |
+
torchvision.io.write_png(x, output_filename)
|
289 |
+
return output_filename
|
290 |
+
|
291 |
+
|
292 |
+
def save_bchw_as_png(x, output_filename):
|
293 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
294 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
295 |
+
x = x.detach().cpu().to(torch.uint8)
|
296 |
+
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
297 |
+
torchvision.io.write_png(x, output_filename)
|
298 |
+
return output_filename
|
299 |
+
|
300 |
+
|
301 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
302 |
+
if tensor1.shape == tensor2.shape:
|
303 |
+
return tensor1 + tensor2
|
304 |
+
|
305 |
+
shape1 = tensor1.shape
|
306 |
+
shape2 = tensor2.shape
|
307 |
+
|
308 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
309 |
+
|
310 |
+
padded_tensor1 = torch.zeros(new_shape)
|
311 |
+
padded_tensor2 = torch.zeros(new_shape)
|
312 |
+
|
313 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
314 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
315 |
+
|
316 |
+
result = padded_tensor1 + padded_tensor2
|
317 |
+
return result
|
318 |
+
|
319 |
+
|
320 |
+
def print_free_mem():
|
321 |
+
torch.cuda.empty_cache()
|
322 |
+
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
323 |
+
free_mem_mb = free_mem / (1024 ** 2)
|
324 |
+
total_mem_mb = total_mem / (1024 ** 2)
|
325 |
+
print(f"Free memory: {free_mem_mb:.2f} MB")
|
326 |
+
print(f"Total memory: {total_mem_mb:.2f} MB")
|
327 |
+
return
|
328 |
+
|
329 |
+
|
330 |
+
def print_gpu_parameters(device, state_dict, log_count=1):
|
331 |
+
summary = {"device": device, "keys_count": len(state_dict)}
|
332 |
+
|
333 |
+
logged_params = {}
|
334 |
+
for i, (key, tensor) in enumerate(state_dict.items()):
|
335 |
+
if i >= log_count:
|
336 |
+
break
|
337 |
+
logged_params[key] = tensor.flatten()[:3].tolist()
|
338 |
+
|
339 |
+
summary["params"] = logged_params
|
340 |
+
|
341 |
+
print(str(summary))
|
342 |
+
return
|
343 |
+
|
344 |
+
|
345 |
+
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
346 |
+
from PIL import Image, ImageDraw, ImageFont
|
347 |
+
|
348 |
+
txt = Image.new("RGB", (width, height), color="white")
|
349 |
+
draw = ImageDraw.Draw(txt)
|
350 |
+
font = ImageFont.truetype(font_path, size=size)
|
351 |
+
|
352 |
+
if text == '':
|
353 |
+
return np.array(txt)
|
354 |
+
|
355 |
+
# Split text into lines that fit within the image width
|
356 |
+
lines = []
|
357 |
+
words = text.split()
|
358 |
+
current_line = words[0]
|
359 |
+
|
360 |
+
for word in words[1:]:
|
361 |
+
line_with_word = f"{current_line} {word}"
|
362 |
+
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
363 |
+
current_line = line_with_word
|
364 |
+
else:
|
365 |
+
lines.append(current_line)
|
366 |
+
current_line = word
|
367 |
+
|
368 |
+
lines.append(current_line)
|
369 |
+
|
370 |
+
# Draw the text line by line
|
371 |
+
y = 0
|
372 |
+
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
373 |
+
|
374 |
+
for line in lines:
|
375 |
+
if y + line_height > height:
|
376 |
+
break # stop drawing if the next line will be outside the image
|
377 |
+
draw.text((0, y), line, fill="black", font=font)
|
378 |
+
y += line_height
|
379 |
+
|
380 |
+
return np.array(txt)
|
381 |
+
|
382 |
+
|
383 |
+
def blue_mark(x):
|
384 |
+
x = x.copy()
|
385 |
+
c = x[:, :, 2]
|
386 |
+
b = cv2.blur(c, (9, 9))
|
387 |
+
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
388 |
+
return x
|
389 |
+
|
390 |
+
|
391 |
+
def green_mark(x):
|
392 |
+
x = x.copy()
|
393 |
+
x[:, :, 2] = -1
|
394 |
+
x[:, :, 0] = -1
|
395 |
+
return x
|
396 |
+
|
397 |
+
|
398 |
+
def frame_mark(x):
|
399 |
+
x = x.copy()
|
400 |
+
x[:64] = -1
|
401 |
+
x[-64:] = -1
|
402 |
+
x[:, :8] = 1
|
403 |
+
x[:, -8:] = 1
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
@torch.inference_mode()
|
408 |
+
def pytorch2numpy(imgs):
|
409 |
+
results = []
|
410 |
+
for x in imgs:
|
411 |
+
y = x.movedim(0, -1)
|
412 |
+
y = y * 127.5 + 127.5
|
413 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
414 |
+
results.append(y)
|
415 |
+
return results
|
416 |
+
|
417 |
+
|
418 |
+
@torch.inference_mode()
|
419 |
+
def numpy2pytorch(imgs):
|
420 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
421 |
+
h = h.movedim(-1, 1)
|
422 |
+
return h
|
423 |
+
|
424 |
+
|
425 |
+
@torch.no_grad()
|
426 |
+
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
427 |
+
if zero_out:
|
428 |
+
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
429 |
+
else:
|
430 |
+
return torch.cat([x, x[:count]], dim=0)
|
431 |
+
|
432 |
+
|
433 |
+
def weighted_mse(a, b, weight):
|
434 |
+
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
435 |
+
|
436 |
+
|
437 |
+
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
438 |
+
x = (x - x_min) / (x_max - x_min)
|
439 |
+
x = max(0.0, min(x, 1.0))
|
440 |
+
x = x ** sigma
|
441 |
+
return y_min + x * (y_max - y_min)
|
442 |
+
|
443 |
+
|
444 |
+
def expand_to_dims(x, target_dims):
|
445 |
+
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
446 |
+
|
447 |
+
|
448 |
+
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
449 |
+
if tensor is None:
|
450 |
+
return None
|
451 |
+
|
452 |
+
first_dim = tensor.shape[0]
|
453 |
+
|
454 |
+
if first_dim == batch_size:
|
455 |
+
return tensor
|
456 |
+
|
457 |
+
if batch_size % first_dim != 0:
|
458 |
+
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
459 |
+
|
460 |
+
repeat_times = batch_size // first_dim
|
461 |
+
|
462 |
+
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
463 |
+
|
464 |
+
|
465 |
+
def dim5(x):
|
466 |
+
return expand_to_dims(x, 5)
|
467 |
+
|
468 |
+
|
469 |
+
def dim4(x):
|
470 |
+
return expand_to_dims(x, 4)
|
471 |
+
|
472 |
+
|
473 |
+
def dim3(x):
|
474 |
+
return expand_to_dims(x, 3)
|
475 |
+
|
476 |
+
|
477 |
+
def crop_or_pad_yield_mask(x, length):
|
478 |
+
B, F, C = x.shape
|
479 |
+
device = x.device
|
480 |
+
dtype = x.dtype
|
481 |
+
|
482 |
+
if F < length:
|
483 |
+
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
484 |
+
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
485 |
+
y[:, :F, :] = x
|
486 |
+
mask[:, :F] = True
|
487 |
+
return y, mask
|
488 |
+
|
489 |
+
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
490 |
+
|
491 |
+
|
492 |
+
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
493 |
+
original_length = int(x.shape[dim])
|
494 |
+
|
495 |
+
if original_length >= minimal_length:
|
496 |
+
return x
|
497 |
+
|
498 |
+
if zero_pad:
|
499 |
+
padding_shape = list(x.shape)
|
500 |
+
padding_shape[dim] = minimal_length - original_length
|
501 |
+
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
502 |
+
else:
|
503 |
+
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
504 |
+
last_element = x[idx]
|
505 |
+
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
506 |
+
|
507 |
+
return torch.cat([x, padding], dim=dim)
|
508 |
+
|
509 |
+
|
510 |
+
def lazy_positional_encoding(t, repeats=None):
|
511 |
+
if not isinstance(t, list):
|
512 |
+
t = [t]
|
513 |
+
|
514 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
515 |
+
|
516 |
+
te = torch.tensor(t)
|
517 |
+
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
518 |
+
|
519 |
+
if repeats is None:
|
520 |
+
return te
|
521 |
+
|
522 |
+
te = te[:, None, :].expand(-1, repeats, -1)
|
523 |
+
|
524 |
+
return te
|
525 |
+
|
526 |
+
|
527 |
+
def state_dict_offset_merge(A, B, C=None):
|
528 |
+
result = {}
|
529 |
+
keys = A.keys()
|
530 |
+
|
531 |
+
for key in keys:
|
532 |
+
A_value = A[key]
|
533 |
+
B_value = B[key].to(A_value)
|
534 |
+
|
535 |
+
if C is None:
|
536 |
+
result[key] = A_value + B_value
|
537 |
+
else:
|
538 |
+
C_value = C[key].to(A_value)
|
539 |
+
result[key] = A_value + B_value - C_value
|
540 |
+
|
541 |
+
return result
|
542 |
+
|
543 |
+
|
544 |
+
def state_dict_weighted_merge(state_dicts, weights):
|
545 |
+
if len(state_dicts) != len(weights):
|
546 |
+
raise ValueError("Number of state dictionaries must match number of weights")
|
547 |
+
|
548 |
+
if not state_dicts:
|
549 |
+
return {}
|
550 |
+
|
551 |
+
total_weight = sum(weights)
|
552 |
+
|
553 |
+
if total_weight == 0:
|
554 |
+
raise ValueError("Sum of weights cannot be zero")
|
555 |
+
|
556 |
+
normalized_weights = [w / total_weight for w in weights]
|
557 |
+
|
558 |
+
keys = state_dicts[0].keys()
|
559 |
+
result = {}
|
560 |
+
|
561 |
+
for key in keys:
|
562 |
+
result[key] = state_dicts[0][key] * normalized_weights[0]
|
563 |
+
|
564 |
+
for i in range(1, len(state_dicts)):
|
565 |
+
state_dict_value = state_dicts[i][key].to(result[key])
|
566 |
+
result[key] += state_dict_value * normalized_weights[i]
|
567 |
+
|
568 |
+
return result
|
569 |
+
|
570 |
+
|
571 |
+
def group_files_by_folder(all_files):
|
572 |
+
grouped_files = {}
|
573 |
+
|
574 |
+
for file in all_files:
|
575 |
+
folder_name = os.path.basename(os.path.dirname(file))
|
576 |
+
if folder_name not in grouped_files:
|
577 |
+
grouped_files[folder_name] = []
|
578 |
+
grouped_files[folder_name].append(file)
|
579 |
+
|
580 |
+
list_of_lists = list(grouped_files.values())
|
581 |
+
return list_of_lists
|
582 |
+
|
583 |
+
|
584 |
+
def generate_timestamp():
|
585 |
+
now = datetime.datetime.now()
|
586 |
+
timestamp = now.strftime('%y%m%d_%H%M%S')
|
587 |
+
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
588 |
+
random_number = random.randint(0, 9999)
|
589 |
+
return f"{timestamp}_{milliseconds}_{random_number}"
|
590 |
+
|
591 |
+
|
592 |
+
def write_PIL_image_with_png_info(image, metadata, path):
|
593 |
+
from PIL.PngImagePlugin import PngInfo
|
594 |
+
|
595 |
+
png_info = PngInfo()
|
596 |
+
for key, value in metadata.items():
|
597 |
+
png_info.add_text(key, value)
|
598 |
+
|
599 |
+
image.save(path, "PNG", pnginfo=png_info)
|
600 |
+
return image
|
601 |
+
|
602 |
+
|
603 |
+
def torch_safe_save(content, path):
|
604 |
+
torch.save(content, path + '_tmp')
|
605 |
+
os.replace(path + '_tmp', path)
|
606 |
+
return path
|
607 |
+
|
608 |
+
|
609 |
+
def move_optimizer_to_device(optimizer, device):
|
610 |
+
for state in optimizer.state.values():
|
611 |
+
for k, v in state.items():
|
612 |
+
if isinstance(v, torch.Tensor):
|
613 |
+
state[k] = v.to(device)
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.6.0
|
2 |
+
diffusers==0.33.1
|
3 |
+
transformers==4.46.2
|
4 |
+
sentencepiece==0.2.0
|
5 |
+
pillow==11.1.0
|
6 |
+
av==12.1.0
|
7 |
+
numpy==1.26.2
|
8 |
+
scipy==1.12.0
|
9 |
+
requests==2.31.0
|
10 |
+
torchsde==0.2.6
|
11 |
+
torch>=2.0.0
|
12 |
+
torchvision
|
13 |
+
torchaudio
|
14 |
+
einops
|
15 |
+
opencv-contrib-python
|
16 |
+
safetensors
|
17 |
+
huggingface_hub
|
18 |
+
spaces
|
setup.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Create necessary directories
|
3 |
+
mkdir -p hf_download
|
4 |
+
mkdir -p outputs
|
5 |
+
|
6 |
+
# If the model has not been downloaded, it will be automatically downloaded on the first run
|
7 |
+
echo "Environment setup complete, run python app.py to start the application"
|