|
import streamlit as st |
|
import os |
|
import glob |
|
import re |
|
import base64 |
|
import pytz |
|
import time |
|
import streamlit.components.v1 as components |
|
|
|
from urllib.parse import quote |
|
from gradio_client import Client |
|
from datetime import datetime |
|
|
|
|
|
Site_Name = 'AI Knowledge Tree Builder 📈🌿 Grow Smarter with Every Click' |
|
title = "🌳✨AI Knowledge Tree Builder🛠️🤓" |
|
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' |
|
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' |
|
icons = '🌳✨🛠️🤓' |
|
|
|
SidebarOutline = """🌳🤖 Designed with the following tenets: |
|
1 📱 **Portability** - Universal access via any device & link sharing |
|
2. ⚡ **Speed of Build** - Rapid deployments < 2min to production |
|
3. 🔗 **Linkiness** - Programmatic access to AI knowledge sources |
|
4. 🎯 **Abstractive** - Core stays lean isolating high-maintenance components |
|
5. 🧠 **Memory** - Shareable flows deep-linked research paths |
|
6. 👤 **Personalized** - Rapidly adapts knowledge base to user needs |
|
7. 🐦 **Living Brevity** - Easily cloneable, self modify data public share results. |
|
""" |
|
|
|
st.set_page_config( |
|
page_title=title, |
|
page_icon=icons, |
|
layout="wide", |
|
initial_sidebar_state="auto", |
|
menu_items={ |
|
'Get Help': helpURL, |
|
'Report a bug': bugURL, |
|
'About': title |
|
} |
|
) |
|
|
|
st.sidebar.markdown(SidebarOutline) |
|
|
|
|
|
if 'selected_file' not in st.session_state: |
|
st.session_state.selected_file = None |
|
if 'view_mode' not in st.session_state: |
|
st.session_state.view_mode = 'view' |
|
if 'files' not in st.session_state: |
|
st.session_state.files = [] |
|
|
|
|
|
|
|
def get_display_name(filename): |
|
"""Extract text from parentheses or return filename as is.""" |
|
match = re.search(r'\((.*?)\)', filename) |
|
if match: |
|
return match.group(1) |
|
return filename |
|
|
|
def get_time_display(filename): |
|
"""Extract just the time portion from the filename.""" |
|
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) |
|
if time_match: |
|
return time_match.group(1) |
|
return filename |
|
|
|
def sanitize_filename(text): |
|
"""Create a safe filename from text while preserving spaces.""" |
|
safe_text = re.sub(r'[^\w\s-]', ' ', text) |
|
safe_text = re.sub(r'\s+', ' ', safe_text) |
|
safe_text = safe_text.strip() |
|
return safe_text[:50] |
|
|
|
def generate_timestamp_filename(query): |
|
"""Generate filename with format: 1103AM 11032024 (Query).md""" |
|
central = pytz.timezone('US/Central') |
|
current_time = datetime.now(central) |
|
time_str = current_time.strftime("%I%M%p") |
|
date_str = current_time.strftime("%m%d%Y") |
|
safe_query = sanitize_filename(query) |
|
filename = f"{time_str} {date_str} ({safe_query}).md" |
|
return filename |
|
|
|
def delete_file(file_path): |
|
"""Delete a file and return success status.""" |
|
try: |
|
os.remove(file_path) |
|
return True |
|
except Exception as e: |
|
st.error(f"Error deleting file: {e}") |
|
return False |
|
|
|
def save_ai_interaction(query, ai_result, is_rerun=False): |
|
"""Save AI interaction to a markdown file with new filename format.""" |
|
filename = generate_timestamp_filename(query) |
|
if is_rerun: |
|
content = f"""# Rerun Query |
|
Original file content used for rerun: |
|
|
|
{query} |
|
|
|
# AI Response (Fun Version) |
|
{ai_result} |
|
""" |
|
else: |
|
content = f"""# Query: {query} |
|
|
|
## AI Response |
|
{ai_result} |
|
""" |
|
try: |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write(content) |
|
return filename |
|
except Exception as e: |
|
st.error(f"Error saving file: {e}") |
|
return None |
|
|
|
def get_file_download_link(file_path): |
|
"""Generate a base64 download link for a file.""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
b64 = base64.b64encode(content.encode()).decode() |
|
filename = os.path.basename(file_path) |
|
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>' |
|
except Exception as e: |
|
st.error(f"Error creating download link: {e}") |
|
return None |
|
|
|
|
|
|
|
def clean_item_text(line): |
|
""" |
|
Remove emoji and numbered prefix from a line. |
|
E.g., "🔧 1. Low-level system integrations compilers Cplusplus" becomes |
|
"Low-level system integrations compilers Cplusplus". |
|
Also remove any bold markdown markers. |
|
""" |
|
|
|
cleaned = re.sub(r'^[^\w]*(\d+\.\s*)', '', line) |
|
|
|
cleaned = re.sub(r'[\U0001F300-\U0001FAFF]', '', cleaned) |
|
cleaned = cleaned.replace("**", "") |
|
return cleaned.strip() |
|
|
|
def clean_header_text(header_line): |
|
""" |
|
Extract header text from a markdown header line. |
|
E.g., "🔧 **Systems, Infrastructure & Low-Level Engineering**" becomes |
|
"Systems, Infrastructure & Low-Level Engineering". |
|
""" |
|
match = re.search(r'\*\*(.*?)\*\*', header_line) |
|
if match: |
|
return match.group(1).strip() |
|
return header_line.strip() |
|
|
|
def parse_markdown_sections(md_text): |
|
""" |
|
Parse markdown text into sections. |
|
Each section starts with a header line containing bold text. |
|
Returns a list of dicts with keys: 'header' and 'items' (list of lines). |
|
Skips any content before the first header. |
|
""" |
|
sections = [] |
|
current_section = None |
|
lines = md_text.splitlines() |
|
for line in lines: |
|
if line.strip() == "": |
|
continue |
|
|
|
if '**' in line: |
|
header = clean_header_text(line) |
|
current_section = {'header': header, 'raw': line, 'items': []} |
|
sections.append(current_section) |
|
elif current_section is not None: |
|
|
|
if re.match(r'^[^\w]*\d+\.\s+', line): |
|
current_section['items'].append(line) |
|
else: |
|
if current_section['items']: |
|
current_section['items'][-1] += " " + line.strip() |
|
else: |
|
current_section['items'].append(line) |
|
return sections |
|
|
|
def display_section_items(items): |
|
""" |
|
Display list of items as links. |
|
For each item, clean the text and generate search links using your original link set. |
|
""" |
|
search_urls = { |
|
"📚📖ArXiv": lambda k: f"/?q={quote(k)}", |
|
"🔮<sup>Google</sup>": lambda k: f"https://www.google.com/search?q={quote(k)}", |
|
"📺<sup>Youtube</sup>": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", |
|
"🔭<sup>Bing</sup>": lambda k: f"https://www.bing.com/search?q={quote(k)}", |
|
"💡<sup>Claude</sup>": lambda k: f"https://claude.ai/new?q={quote(k)}", |
|
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}", |
|
"🤖<sup>GPT</sup>": lambda k: f"https://chatgpt.com/?model=o3-mini-high&q={quote(k)}", |
|
} |
|
for item in items: |
|
cleaned_text = clean_item_text(item) |
|
links_md = ' '.join([f"[{emoji}]({url(cleaned_text)})" for emoji, url in search_urls.items()]) |
|
st.markdown(f"- **{cleaned_text}** {links_md}", unsafe_allow_html=True) |
|
|
|
def display_markdown_tree(): |
|
""" |
|
Allow user to upload a .md file or load README.md. |
|
Parse the markdown into sections and display each section in a collapsed expander |
|
with the original markdown and a link tree of items. |
|
""" |
|
st.markdown("## Markdown Tree Parser") |
|
uploaded_file = st.file_uploader("Upload a Markdown file", type=["md"]) |
|
if uploaded_file is not None: |
|
md_content = uploaded_file.read().decode("utf-8") |
|
else: |
|
if os.path.exists("README.md"): |
|
with open("README.md", "r", encoding="utf-8") as f: |
|
md_content = f.read() |
|
else: |
|
st.info("No Markdown file uploaded and README.md not found.") |
|
return |
|
|
|
sections = parse_markdown_sections(md_content) |
|
if not sections: |
|
st.info("No sections found in the markdown file.") |
|
return |
|
|
|
for sec in sections: |
|
with st.expander(sec['header'], expanded=False): |
|
st.markdown(f"**Original Markdown:**\n\n{sec['raw']}\n") |
|
if sec['items']: |
|
st.markdown("**Link Tree:**") |
|
display_section_items(sec['items']) |
|
else: |
|
st.write("No items found in this section.") |
|
|
|
|
|
|
|
def search_arxiv(query): |
|
st.write("Performing AI Lookup...") |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
result1 = client.predict( |
|
prompt=query, |
|
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
stream_outputs=True, |
|
api_name="/ask_llm" |
|
) |
|
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") |
|
st.markdown(result1) |
|
result2 = client.predict( |
|
prompt=query, |
|
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", |
|
stream_outputs=True, |
|
api_name="/ask_llm" |
|
) |
|
st.markdown("### Mistral-7B-Instruct-v0.2 Result") |
|
st.markdown(result2) |
|
combined_result = f"{result1}\n\n{result2}" |
|
return combined_result |
|
|
|
@st.cache_resource |
|
def SpeechSynthesis(result): |
|
documentHTML5 = ''' |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Read It Aloud</title> |
|
<script type="text/javascript"> |
|
function readAloud() { |
|
const text = document.getElementById("textArea").value; |
|
const speech = new SpeechSynthesisUtterance(text); |
|
window.speechSynthesis.speak(speech); |
|
} |
|
</script> |
|
</head> |
|
<body> |
|
<h1>🔊 Read It Aloud</h1> |
|
<textarea id="textArea" rows="10" cols="80"> |
|
''' |
|
documentHTML5 += result |
|
documentHTML5 += ''' |
|
</textarea> |
|
<br> |
|
<button onclick="readAloud()">🔊 Read Aloud</button> |
|
</body> |
|
</html> |
|
''' |
|
components.html(documentHTML5, width=1280, height=300) |
|
|
|
def display_file_content(file_path): |
|
"""Display file content with editing capabilities.""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
if st.session_state.view_mode == 'view': |
|
st.markdown(content) |
|
else: |
|
edited_content = st.text_area( |
|
"Edit content", |
|
content, |
|
height=400, |
|
key=f"edit_{os.path.basename(file_path)}" |
|
) |
|
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): |
|
try: |
|
with open(file_path, 'w', encoding='utf-8') as f: |
|
f.write(edited_content) |
|
st.success(f"Successfully saved changes to {file_path}") |
|
except Exception as e: |
|
st.error(f"Error saving changes: {e}") |
|
except Exception as e: |
|
st.error(f"Error reading file: {e}") |
|
|
|
def file_management_sidebar(): |
|
"""Redesigned sidebar with improved layout and additional functionality.""" |
|
st.sidebar.title("📁 File Management") |
|
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] |
|
md_files.sort() |
|
st.session_state.files = md_files |
|
if md_files: |
|
st.sidebar.markdown("### Saved Files") |
|
for idx, file in enumerate(md_files): |
|
st.sidebar.markdown("---") |
|
st.sidebar.text(get_time_display(file)) |
|
download_link = get_file_download_link(file) |
|
if download_link: |
|
st.sidebar.markdown(download_link, unsafe_allow_html=True) |
|
col1, col2, col3, col4 = st.sidebar.columns(4) |
|
with col1: |
|
if st.button("📄View", key=f"view_{idx}"): |
|
st.session_state.selected_file = file |
|
st.session_state.view_mode = 'view' |
|
with col2: |
|
if st.button("✏️Edit", key=f"edit_{idx}"): |
|
st.session_state.selected_file = file |
|
st.session_state.view_mode = 'edit' |
|
with col3: |
|
if st.button("🔄Run", key=f"rerun_{idx}"): |
|
try: |
|
with open(file, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: |
|
|
|
""" |
|
full_prompt = rerun_prefix + content |
|
ai_result = perform_ai_lookup(full_prompt) |
|
saved_file = save_ai_interaction(content, ai_result, is_rerun=True) |
|
if saved_file: |
|
st.success(f"Created fun version in {saved_file}") |
|
st.session_state.selected_file = saved_file |
|
st.session_state.view_mode = 'view' |
|
except Exception as e: |
|
st.error(f"Error during rerun: {e}") |
|
with col4: |
|
if st.button("🗑️Delete", key=f"delete_{idx}"): |
|
if delete_file(file): |
|
st.success(f"Deleted {file}") |
|
st.rerun() |
|
else: |
|
st.error(f"Failed to delete {file}") |
|
st.sidebar.markdown("---") |
|
if st.sidebar.button("📝 Create New Note"): |
|
filename = generate_timestamp_filename("New Note") |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write("# New Markdown File\n") |
|
st.sidebar.success(f"Created: {filename}") |
|
st.session_state.selected_file = filename |
|
st.session_state.view_mode = 'edit' |
|
else: |
|
st.sidebar.write("No markdown files found.") |
|
if st.sidebar.button("📝 Create First Note"): |
|
filename = generate_timestamp_filename("New Note") |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write("# New Markdown File\n") |
|
st.sidebar.success(f"Created: {filename}") |
|
st.session_state.selected_file = filename |
|
st.session_state.view_mode = 'edit' |
|
|
|
def perform_ai_lookup(query): |
|
start_time = time.strftime("%Y-%m-%d %H:%M:%S") |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
response1 = client.predict( |
|
query, |
|
20, |
|
"Semantic Search", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
api_name="/update_with_rag_md" |
|
) |
|
Question = '### 🔎 ' + query + '\r\n' |
|
References = response1[0] |
|
ReferenceLinks = "" |
|
results = "" |
|
RunSecondQuery = True |
|
if RunSecondQuery: |
|
response2 = client.predict( |
|
query, |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
True, |
|
api_name="/ask_llm" |
|
) |
|
if len(response2) > 10: |
|
Answer = response2 |
|
SpeechSynthesis(Answer) |
|
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks |
|
st.markdown(results) |
|
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete') |
|
end_time = time.strftime("%Y-%m-%d %H:%M:%S") |
|
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S")) |
|
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S")) |
|
elapsed_seconds = end_timestamp - start_timestamp |
|
st.write(f"Start time: {start_time}") |
|
st.write(f"Finish time: {end_time}") |
|
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds") |
|
filename = generate_filename(query, "md") |
|
create_file(filename, query, results) |
|
return results |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
safe_prompt = re.sub(r'\W+', '_', prompt)[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
def create_file(filename, prompt, response): |
|
with open(filename, 'w', encoding='utf-8') as file: |
|
file.write(prompt + "\n\n" + response) |
|
|
|
|
|
|
|
def main(): |
|
st.markdown("### AI Knowledge Tree Builder 🧠🌱 Cultivate Your AI Mindscape!") |
|
query_params = st.query_params |
|
query = query_params.get('q', '') |
|
show_initial_content = True |
|
|
|
if query: |
|
show_initial_content = False |
|
st.write(f"### Search query received: {query}") |
|
try: |
|
ai_result = perform_ai_lookup(query) |
|
saved_file = save_ai_interaction(query, ai_result) |
|
if saved_file: |
|
st.success(f"Saved interaction to {saved_file}") |
|
st.session_state.selected_file = saved_file |
|
st.session_state.view_mode = 'view' |
|
except Exception as e: |
|
st.error(f"Error during AI lookup: {e}") |
|
|
|
file_management_sidebar() |
|
|
|
if st.session_state.selected_file: |
|
show_initial_content = False |
|
if os.path.exists(st.session_state.selected_file): |
|
st.markdown(f"### Current File: {st.session_state.selected_file}") |
|
display_file_content(st.session_state.selected_file) |
|
else: |
|
st.error("Selected file no longer exists.") |
|
st.session_state.selected_file = None |
|
st.rerun() |
|
|
|
if show_initial_content: |
|
display_markdown_tree() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|