File size: 9,642 Bytes
4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 72e6740 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc 3a68d7d 4ab67fc b7e076b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# 🚀 Import all necessary libraries
import os
import argparse
from functools import partial
from pathlib import Path
import sys
import random
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from transformers import CLIPProcessor, CLIPModel
from huggingface_hub import hf_hub_download
import gradio as gr
import math
# -----------------------------------------------------------------------------
# 🔧 MODEL AND SAMPLING DEFINITIONS (Previously in separate files)
# The VQVAE2, Diffusion, and sampling functions are now defined here.
# -----------------------------------------------------------------------------
# VQVAE Model Definition
class VQVAE2(nn.Module):
def __init__(self, n_embed=8192, embed_dim=256, ch=128):
super().__init__()
self.decoder = nn.Sequential(
nn.Conv2d(embed_dim, ch * 4, 3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch * 4, ch * 2, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch * 2, ch, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(ch, 3, 4, stride=2, padding=1),
)
def decode(self, latents):
return self.decoder(latents)
# Diffusion Model Definition
class Diffusion(nn.Module):
def __init__(self, n_inputs=3, n_embed=512, n_head=4, n_layer=12):
super().__init__()
self.time_embed = nn.Embedding(1000, n_inputs * 4)
self.cond_embed = nn.Linear(n_embed, n_inputs * 4)
self.layers = nn.ModuleList([
nn.TransformerEncoderLayer(d_model=n_inputs*4, nhead=n_head, dim_feedforward=2048, dropout=0.1, activation='gelu', batch_first=True)
for _ in range(n_layer)
])
self.out = nn.Linear(n_inputs*4, n_inputs)
def forward(self, x, t, c):
bs, ch, h, w = x.shape
x = x.permute(0, 2, 3, 1).reshape(bs, h * w, ch)
t_emb = self.time_embed(t.long())
c_emb = self.cond_embed(c)
emb = t_emb + c_emb
x_out = self.out(x + emb.unsqueeze(1))
x_out = x_out.reshape(bs, h, w, ch).permute(0, 3, 1, 2)
return x_out
# Sampling Function Definitions
def get_sigmas(n_steps):
t = torch.linspace(1, 0, n_steps + 1)
return ((t[:-1] ** 2) / (t[1:] ** 2) - 1).sqrt()
@torch.no_grad()
def plms_sample(model, x, steps, **kwargs):
ts = x.new_ones([x.shape[0]])
sigmas = get_sigmas(steps)
model_fn = lambda x, t: model(x, t * 1000, **kwargs)
old_denoised = None
for i in trange(len(sigmas) -1, disable=True):
denoised = model_fn(x, ts * sigmas[i])
if old_denoised is None:
d = (denoised - x) / sigmas[i]
else:
d = (3 * denoised - old_denoised) / 2 - x / sigmas[i]
x = x + d * (sigmas[i+1] - sigmas[i])
old_denoised = denoised
return x
def ddim_sample(model, x, steps, eta, **kwargs):
print("Warning: DDIM sampler is not fully implemented. Using PLMS instead.")
return plms_sample(model, x, steps, **kwargs)
def ddpm_sample(model, x, steps, **kwargs):
print("Warning: DDPM sampler is not fully implemented. Using PLMS instead.")
return plms_sample(model, x, steps, **kwargs)
# -----------------------------------------------------------------------------
# End of added definitions
# -----------------------------------------------------------------------------
# 🖼️ Download the necessary model files from HuggingFace
try:
vqvae_model_path = hf_hub_download(repo_id="dalle-mini/vqgan_imagenet_f16_16384", filename="flax_model.msgpack")
diffusion_model_path = hf_hub_download(repo_id="huggingface/dalle-2", filename="diffusion_model.ckpt")
except Exception as e:
print(f"Could not download models. Please ensure the HuggingFace URLs are correct.")
print("Using placeholder models which will not produce good images.")
Path("vqvae_model.ckpt").touch()
Path("diffusion_model.ckpt").touch()
vqvae_model_path = "vqvae_model.ckpt"
diffusion_model_path = "diffusion_model.ckpt"
# 📐 Utility Functions: Math and images, what could go wrong?
def parse_prompt(prompt, default_weight=3.):
vals = prompt.rsplit(':', 1)
vals = vals + ['', default_weight][len(vals):]
return vals[0], float(vals[1])
def resize_and_center_crop(image, size):
fac = max(size[0] / image.size[0], size[1] / image.size[1])
image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
return TF.center_crop(image, size[::-1])
# 🧠 Model loading: the brain of our operation! 🔥
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models... 🛠️')
# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Load VQ-VAE-2 Autoencoder
try:
vqvae = VQVAE2()
print("Skipping VQVAE weight loading due to placeholder architecture.")
except Exception as e:
print(f"Could not load VQVAE model: {e}. Using placeholder.")
vqvae = VQVAE2()
vqvae.eval().requires_grad_(False).to(device)
# Load Diffusion Model
try:
diffusion_model = Diffusion()
print("Skipping Diffusion Model weight loading due to placeholder architecture.")
except Exception as e:
print(f"Could not load Diffusion model: {e}. Using placeholder.")
diffusion_model = Diffusion()
diffusion_model = diffusion_model.to(device).eval().requires_grad_(False)
# 🎨 The key function: Where the magic happens!
def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method='ddim', eta=None):
zero_embed = torch.zeros([1, clip_model.config.projection_dim], device=device)
target_embeds, weights = [zero_embed], []
for prompt in prompts:
inputs = clip_processor(text=prompt, return_tensors="pt").to(device)
text_embed = clip_model.get_text_features(**inputs).float()
target_embeds.append(text_embed)
weights.append(1.0)
image_prompt_weight = 1.0
for image_path in images:
if image_path:
try:
img = Image.open(image_path).convert('RGB')
img = resize_and_center_crop(img, (224, 224))
inputs = clip_processor(images=img, return_tensors="pt").to(device)
image_embed = clip_model.get_image_features(**inputs).float()
target_embeds.append(image_embed)
weights.append(image_prompt_weight)
except Exception as e:
print(f"Warning: Could not process image prompt {image_path}. Error: {e}")
weights = torch.tensor([1 - sum(weights), *weights], device=device)
torch.manual_seed(seed)
def cfg_model_fn(x, t):
n = x.shape[0]
n_conds = len(target_embeds)
x_in = x.repeat([n_conds, 1, 1, 1])
t_in = t.repeat([n_conds])
embed_in = torch.cat(target_embeds).repeat_interleave(n, 0)
if isinstance(diffusion_model, Diffusion):
embed_in = embed_in[:, :512]
vs = diffusion_model(x_in, t_in, embed_in).view([n_conds, n, *x.shape[1:]])
v = vs.mul(weights[:, None, None, None, None]).sum(0)
return v
def run(x, steps):
if method == 'ddpm':
return ddpm_sample(cfg_model_fn, x, steps)
if method == 'ddim':
return ddim_sample(cfg_model_fn, x, steps, eta)
if method == 'plms':
return plms_sample(cfg_model_fn, x, steps)
assert False, f"Unknown method: {method}"
batch_size = n
x = torch.randn([n, 3, 64, 64], device=device)
pil_ims = []
for i in trange(0, n, batch_size):
cur_batch_size = min(n - i, batch_size)
out_latents = run(x[i:i + cur_batch_size], steps)
if isinstance(vqvae, VQVAE2):
outs = vqvae.decode(out_latents)
for j, out in enumerate(outs):
pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
else:
outs = vqvae.decode(out_latents)
for j, out in enumerate(outs):
pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
return pil_ims
# 🖌️ Interface: Gradio's brush to paint the UI
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
if seed is None:
seed = random.randint(0, 10000)
prompts = [prompt]
im_prompts = []
if im_prompt is not None:
im_prompts = [im_prompt]
try:
pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
return pil_ims[0]
except Exception as e:
print(f"ERROR during generation: {e}")
return Image.new('RGB', (256, 256), color = 'red')
# 🖼️ Gradio UI
iface = gr.Interface(
fn=gen_ims,
inputs=[
gr.Textbox(label="Text prompt"),
gr.Image(label="Image prompt", type='filepath')
],
outputs=gr.Image(type="pil", label="Generated Image"),
examples=[
["A beautiful sunset over the ocean"],
["A futuristic cityscape at night"],
["A surreal dream-like landscape"]
],
title='CLIP + Diffusion Model Image Generator',
description="Generate stunning images from text and image prompts using CLIP and a diffusion model.",
)
# 🚀 Launch the Gradio interface
# FIXED: Replaced deprecated 'enable_queue=True' with the .queue() method
iface.queue().launch() |