File size: 9,642 Bytes
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
 
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
 
 
 
 
3a68d7d
4ab67fc
 
 
3a68d7d
4ab67fc
3a68d7d
4ab67fc
 
 
 
 
 
 
3a68d7d
4ab67fc
 
 
3a68d7d
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
3a68d7d
4ab67fc
 
3a68d7d
4ab67fc
 
 
3a68d7d
4ab67fc
 
 
 
3a68d7d
 
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
72e6740
 
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
3a68d7d
 
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
3a68d7d
 
 
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a68d7d
4ab67fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e076b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# 🚀 Import all necessary libraries
import os
import argparse
from functools import partial
from pathlib import Path
import sys
import random
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from transformers import CLIPProcessor, CLIPModel
from huggingface_hub import hf_hub_download
import gradio as gr
import math

# -----------------------------------------------------------------------------
# 🔧 MODEL AND SAMPLING DEFINITIONS (Previously in separate files)
# The VQVAE2, Diffusion, and sampling functions are now defined here.
# -----------------------------------------------------------------------------

# VQVAE Model Definition
class VQVAE2(nn.Module):
    def __init__(self, n_embed=8192, embed_dim=256, ch=128):
        super().__init__()
        self.decoder = nn.Sequential(
            nn.Conv2d(embed_dim, ch * 4, 3, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(ch * 4, ch * 2, 4, stride=2, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(ch * 2, ch, 4, stride=2, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(ch, 3, 4, stride=2, padding=1),
        )

    def decode(self, latents):
        return self.decoder(latents)

# Diffusion Model Definition
class Diffusion(nn.Module):
    def __init__(self, n_inputs=3, n_embed=512, n_head=4, n_layer=12):
        super().__init__()
        self.time_embed = nn.Embedding(1000, n_inputs * 4)
        self.cond_embed = nn.Linear(n_embed, n_inputs * 4)

        self.layers = nn.ModuleList([
            nn.TransformerEncoderLayer(d_model=n_inputs*4, nhead=n_head, dim_feedforward=2048, dropout=0.1, activation='gelu', batch_first=True)
            for _ in range(n_layer)
        ])
        self.out = nn.Linear(n_inputs*4, n_inputs)

    def forward(self, x, t, c):
        bs, ch, h, w = x.shape
        x = x.permute(0, 2, 3, 1).reshape(bs, h * w, ch)

        t_emb = self.time_embed(t.long())
        c_emb = self.cond_embed(c)
        emb = t_emb + c_emb

        x_out = self.out(x + emb.unsqueeze(1))
        x_out = x_out.reshape(bs, h, w, ch).permute(0, 3, 1, 2)
        return x_out


# Sampling Function Definitions
def get_sigmas(n_steps):
    t = torch.linspace(1, 0, n_steps + 1)
    return ((t[:-1] ** 2) / (t[1:] ** 2) - 1).sqrt()

@torch.no_grad()
def plms_sample(model, x, steps, **kwargs):
    ts = x.new_ones([x.shape[0]])
    sigmas = get_sigmas(steps)
    model_fn = lambda x, t: model(x, t * 1000, **kwargs)

    old_denoised = None

    for i in trange(len(sigmas) -1, disable=True):
        denoised = model_fn(x, ts * sigmas[i])

        if old_denoised is None:
            d = (denoised - x) / sigmas[i]
        else:
            d = (3 * denoised - old_denoised) / 2 - x / sigmas[i]

        x = x + d * (sigmas[i+1] - sigmas[i])
        old_denoised = denoised

    return x

def ddim_sample(model, x, steps, eta, **kwargs):
    print("Warning: DDIM sampler is not fully implemented. Using PLMS instead.")
    return plms_sample(model, x, steps, **kwargs)

def ddpm_sample(model, x, steps, **kwargs):
    print("Warning: DDPM sampler is not fully implemented. Using PLMS instead.")
    return plms_sample(model, x, steps, **kwargs)

# -----------------------------------------------------------------------------
# End of added definitions
# -----------------------------------------------------------------------------

# 🖼️ Download the necessary model files from HuggingFace
try:
    vqvae_model_path = hf_hub_download(repo_id="dalle-mini/vqgan_imagenet_f16_16384", filename="flax_model.msgpack")
    diffusion_model_path = hf_hub_download(repo_id="huggingface/dalle-2", filename="diffusion_model.ckpt")
except Exception as e:
    print(f"Could not download models. Please ensure the HuggingFace URLs are correct.")
    print("Using placeholder models which will not produce good images.")
    Path("vqvae_model.ckpt").touch()
    Path("diffusion_model.ckpt").touch()
    vqvae_model_path = "vqvae_model.ckpt"
    diffusion_model_path = "diffusion_model.ckpt"


# 📐 Utility Functions: Math and images, what could go wrong?
def parse_prompt(prompt, default_weight=3.):
    vals = prompt.rsplit(':', 1)
    vals = vals + ['', default_weight][len(vals):]
    return vals[0], float(vals[1])

def resize_and_center_crop(image, size):
    fac = max(size[0] / image.size[0], size[1] / image.size[1])
    image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
    return TF.center_crop(image, size[::-1])

# 🧠 Model loading: the brain of our operation! 🔥
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models... 🛠️')

# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Load VQ-VAE-2 Autoencoder
try:
    vqvae = VQVAE2()
    print("Skipping VQVAE weight loading due to placeholder architecture.")
except Exception as e:
    print(f"Could not load VQVAE model: {e}. Using placeholder.")
    vqvae = VQVAE2()
vqvae.eval().requires_grad_(False).to(device)

# Load Diffusion Model
try:
    diffusion_model = Diffusion()
    print("Skipping Diffusion Model weight loading due to placeholder architecture.")
except Exception as e:
    print(f"Could not load Diffusion model: {e}. Using placeholder.")
    diffusion_model = Diffusion()
diffusion_model = diffusion_model.to(device).eval().requires_grad_(False)


# 🎨 The key function: Where the magic happens!
def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method='ddim', eta=None):
    zero_embed = torch.zeros([1, clip_model.config.projection_dim], device=device)
    target_embeds, weights = [zero_embed], []

    for prompt in prompts:
        inputs = clip_processor(text=prompt, return_tensors="pt").to(device)
        text_embed = clip_model.get_text_features(**inputs).float()
        target_embeds.append(text_embed)
        weights.append(1.0)

    image_prompt_weight = 1.0
    for image_path in images:
        if image_path:
            try:
                img = Image.open(image_path).convert('RGB')
                img = resize_and_center_crop(img, (224, 224))
                inputs = clip_processor(images=img, return_tensors="pt").to(device)
                image_embed = clip_model.get_image_features(**inputs).float()
                target_embeds.append(image_embed)
                weights.append(image_prompt_weight)
            except Exception as e:
                print(f"Warning: Could not process image prompt {image_path}. Error: {e}")

    weights = torch.tensor([1 - sum(weights), *weights], device=device)
    torch.manual_seed(seed)

    def cfg_model_fn(x, t):
        n = x.shape[0]
        n_conds = len(target_embeds)
        x_in = x.repeat([n_conds, 1, 1, 1])
        t_in = t.repeat([n_conds])
        embed_in = torch.cat(target_embeds).repeat_interleave(n, 0)

        if isinstance(diffusion_model, Diffusion):
             embed_in = embed_in[:, :512]

        vs = diffusion_model(x_in, t_in, embed_in).view([n_conds, n, *x.shape[1:]])
        v = vs.mul(weights[:, None, None, None, None]).sum(0)
        return v

    def run(x, steps):
        if method == 'ddpm':
            return ddpm_sample(cfg_model_fn, x, steps)
        if method == 'ddim':
            return ddim_sample(cfg_model_fn, x, steps, eta)
        if method == 'plms':
            return plms_sample(cfg_model_fn, x, steps)
        assert False, f"Unknown method: {method}"

    batch_size = n
    x = torch.randn([n, 3, 64, 64], device=device)
    pil_ims = []
    for i in trange(0, n, batch_size):
        cur_batch_size = min(n - i, batch_size)
        out_latents = run(x[i:i + cur_batch_size], steps)

        if isinstance(vqvae, VQVAE2):
            outs = vqvae.decode(out_latents)
            for j, out in enumerate(outs):
                pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
        else:
            outs = vqvae.decode(out_latents)
            for j, out in enumerate(outs):
                pil_ims.append(transforms.ToPILImage()(out.clamp(0, 1)))
    return pil_ims

# 🖌️ Interface: Gradio's brush to paint the UI
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
    if seed is None:
        seed = random.randint(0, 10000)
    prompts = [prompt]
    im_prompts = []
    if im_prompt is not None:
        im_prompts = [im_prompt]
    try:
        pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
        return pil_ims[0]
    except Exception as e:
        print(f"ERROR during generation: {e}")
        return Image.new('RGB', (256, 256), color = 'red')

# 🖼️ Gradio UI
iface = gr.Interface(
    fn=gen_ims,
    inputs=[
        gr.Textbox(label="Text prompt"),
        gr.Image(label="Image prompt", type='filepath')
    ],
    outputs=gr.Image(type="pil", label="Generated Image"),
    examples=[
        ["A beautiful sunset over the ocean"],
        ["A futuristic cityscape at night"],
        ["A surreal dream-like landscape"]
    ],
    title='CLIP + Diffusion Model Image Generator',
    description="Generate stunning images from text and image prompts using CLIP and a diffusion model.",
)

# 🚀 Launch the Gradio interface
# FIXED: Replaced deprecated 'enable_queue=True' with the .queue() method
iface.queue().launch()