Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.graph_objs as go | |
from keras.preprocessing.text import Tokenizer | |
import requests | |
from bs4 import BeautifulSoup | |
# Set up the Streamlit app | |
st.set_page_config(page_title='Keras and Plotly Example') | |
st.sidebar.title('Word Frequency') | |
# Load data from Wikipedia | |
def load_wiki_data(pages): | |
data = [] | |
for page in pages: | |
url = f'https://en.wikipedia.org/wiki/{page}' | |
response = requests.get(url) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
text = soup.get_text() | |
data.append(text) | |
df = pd.DataFrame({'text': data}) | |
return df | |
# Create a bar chart of word frequency | |
def plot_word_frequency(text): | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(text) | |
word_counts = tokenizer.word_counts | |
words = list(word_counts.keys()) | |
counts = list(word_counts.values()) | |
# Categorize words by type and assign color based on type | |
word_types = {} | |
for word in words: | |
if word.isalpha(): | |
if word.isupper(): | |
word_types[word] = 'uppercase' | |
elif word.istitle(): | |
word_types[word] = 'titlecase' | |
else: | |
word_types[word] = 'lowercase' | |
else: | |
word_types[word] = 'other' | |
colors = {'uppercase': 'red', 'titlecase': 'green', 'lowercase': 'blue', 'other': 'gray'} | |
color_list = [colors[word_types[word]] for word in words] | |
fig = go.Figure([go.Bar(x=words, y=counts, marker={'color': color_list})]) | |
fig.update_layout(title='Word Frequency') | |
st.plotly_chart(fig) | |
# Main Streamlit app | |
pages = ['Python_(programming_language)', 'Data_science', 'Machine_learning'] | |
if st.sidebar.button('Load Wikipedia Data'): | |
df = load_wiki_data(pages) | |
st.sidebar.write('Data loaded') | |
else: | |
df = pd.DataFrame({'text': []}) | |
st.sidebar.write('Click "Load Wikipedia Data" to load data') | |
st.write(df) | |
text = df['text'].tolist() | |
if text: | |
plot_word_frequency(text) | |